Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>0
([(0,1)],2)=>0
([],3)=>0
([(1,2)],3)=>0
([(0,2),(1,2)],3)=>0
([(0,1),(0,2),(1,2)],3)=>0
([],4)=>0
([(2,3)],4)=>0
([(1,3),(2,3)],4)=>0
([(0,3),(1,3),(2,3)],4)=>0
([(0,3),(1,2)],4)=>0
([(0,3),(1,2),(2,3)],4)=>0
([(1,2),(1,3),(2,3)],4)=>0
([(0,3),(1,2),(1,3),(2,3)],4)=>0
([(0,2),(0,3),(1,2),(1,3)],4)=>0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([],5)=>0
([(3,4)],5)=>0
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>0
([(1,4),(2,3)],5)=>0
([(1,4),(2,3),(3,4)],5)=>0
([(0,1),(2,4),(3,4)],5)=>0
([(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,3),(3,4)],5)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,3),(2,3),(2,4)],5)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([],6)=>0
([(4,5)],6)=>0
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4)],6)=>0
([(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,5),(4,5)],6)=>0
([(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3)],6)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of triconnected components of a graph.
A connected graph is triconnected or 3-vertex connected if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as blocks, and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the SPQR-tree of the graph.
A connected graph is triconnected or 3-vertex connected if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as blocks, and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the SPQR-tree of the graph.
References
Code
def statistic(G): from sage.graphs.connectivity import blocks_and_cut_vertices, spqr_tree blocks, _ = blocks_and_cut_vertices(G) res = 0 for b in blocks: B = G.subgraph(b) if len(b) > 1: tree = spqr_tree(B) for c in tree: if c[0] == 'R': res += 1 return res
Created
Dec 02, 2022 at 00:55 by Harry Richman
Updated
Dec 02, 2022 at 09:23 by Harry Richman
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!