edit this statistic or download as text // json
Identifier
Values
([],1) => 0
([],2) => 0
([(0,1)],2) => 0
([],3) => 0
([(1,2)],3) => 0
([(0,2),(1,2)],3) => 0
([(0,1),(0,2),(1,2)],3) => 0
([],4) => 0
([(2,3)],4) => 0
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(2,3)],4) => 0
([(0,3),(1,2)],4) => 0
([(0,3),(1,2),(2,3)],4) => 0
([(1,2),(1,3),(2,3)],4) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([],5) => 0
([(3,4)],5) => 0
([(2,4),(3,4)],5) => 0
([(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,4),(2,3)],5) => 0
([(1,4),(2,3),(3,4)],5) => 0
([(0,1),(2,4),(3,4)],5) => 0
([(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([],6) => 0
([(4,5)],6) => 0
([(3,5),(4,5)],6) => 0
([(2,5),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4)],6) => 0
([(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,5),(4,5)],6) => 0
([(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3)],6) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,1),(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 0
>>> Load all 208 entries. <<<
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of triconnected components of a graph.
A connected graph is triconnected or 3-vertex connected if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as blocks, and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the SPQR-tree of the graph.
References
Code
def statistic(G):
    from sage.graphs.connectivity import blocks_and_cut_vertices, spqr_tree
    blocks, _ = blocks_and_cut_vertices(G)
    res = 0
    for b in blocks:
        B = G.subgraph(b)
        if len(b) > 1:
            tree = spqr_tree(B)
            for c in tree:
                if c[0] == 'R': res += 1
    return res

Created
Dec 02, 2022 at 00:55 by Harry Richman
Updated
Dec 02, 2022 at 09:23 by Harry Richman