Identifier
- St001872: Dyck paths ⟶ ℤ
Values
[1,0] => 1
[1,0,1,0] => 3
[1,1,0,0] => 1
[1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => 3
[1,1,0,0,1,0] => 3
[1,1,0,1,0,0] => 4
[1,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0] => 3
[1,0,1,1,0,0,1,0] => 5
[1,0,1,1,0,1,0,0] => 3
[1,0,1,1,1,0,0,0] => 3
[1,1,0,0,1,0,1,0] => 3
[1,1,0,0,1,1,0,0] => 3
[1,1,0,1,0,0,1,0] => 4
[1,1,0,1,0,1,0,0] => 4
[1,1,0,1,1,0,0,0] => 4
[1,1,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,0,0] => 4
[1,1,1,0,1,0,0,0] => 5
[1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => 5
[1,0,1,0,1,1,0,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => 6
[1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,0,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => 6
[1,0,1,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => 6
[1,0,1,1,1,0,1,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => 3
[1,1,0,1,0,0,1,0,1,0] => 6
[1,1,0,1,0,0,1,1,0,0] => 4
[1,1,0,1,0,1,0,0,1,0] => 6
[1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => 4
[1,1,0,1,1,0,0,0,1,0] => 6
[1,1,0,1,1,0,0,1,0,0] => 4
[1,1,0,1,1,0,1,0,0,0] => 4
[1,1,0,1,1,1,0,0,0,0] => 4
[1,1,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,0,0,1,0,0,1,0] => 4
[1,1,1,0,0,1,0,1,0,0] => 4
[1,1,1,0,0,1,1,0,0,0] => 4
[1,1,1,0,1,0,0,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => 5
[1,1,1,0,1,0,1,0,0,0] => 5
[1,1,1,0,1,1,0,0,0,0] => 5
[1,1,1,1,0,0,0,0,1,0] => 3
[1,1,1,1,0,0,0,1,0,0] => 4
[1,1,1,1,0,0,1,0,0,0] => 5
[1,1,1,1,0,1,0,0,0,0] => 6
[1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => 7
[1,0,1,0,1,0,1,0,1,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => 7
[1,0,1,0,1,0,1,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => 7
[1,0,1,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => 7
[1,0,1,1,0,0,1,0,1,1,0,0] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => 7
[1,0,1,1,0,0,1,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => 5
[1,0,1,1,0,1,1,0,0,1,0,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => 7
[1,0,1,1,0,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => 3
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra.
Code
DeclareOperation("numberevenprojdiminj", [IsList]);
InstallMethod(numberevenprojdiminj, "for a representation of a quiver", [IsList],0,function(L)
local U,A,injA,W;
A:=L[1];
injA:=IndecInjectiveModules(A);
W:=Filtered(injA,x->IsEvenInt(ProjDimensionOfModule(x,33))=true);
return(Size(W));
end
);
Created
Dec 16, 2019 at 14:09 by Rene Marczinzik
Updated
Dec 16, 2019 at 14:09 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!