Identifier
Values
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
>>> Load all 226 entries. <<<
[1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,1,0,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,1,0,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,1,0,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,1,0,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1,1,1],[1,1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1,1,1],[1,1,1]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,1],[2,1,1,1]] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,1],[2,1,1,1]] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,2,2],[2,2,1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,2],[2,2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,2,2],[2,2,1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,2],[2,2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,1],[2,1,1,1]] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2,1],[2,1,1,1]] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,1,0,0,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
search for individual values
searching the database for the individual values of this statistic
Description
The number of simple modules with projective dimension at most 1.
Map
skew partition
Description
The parallelogram polyomino corresponding to a Dyck path, interpreted as a skew partition.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the skew partition definded by the diagram of $\gamma(D)$.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function $s_{\lambda/\mu}=\sum_\nu c^\lambda_{\mu, \nu} s_\nu$ as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions $\nu$ with $c^\lambda_{\mu, \nu} > 0$ form a lattice.
The example $\lambda = (5^2,4^2,1)$ and $\mu=(3,2)$ shows that this lattice is not a sublattice of the dominance order.