Identifier
Values
[1,2] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[1,-2] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[-1,2] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[-1,-2] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[2,1] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[2,-1] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[-2,1] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[-2,-1] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,-3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[1,-2,3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[1,-2,-3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[-1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[-1,2,-3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[-1,-2,3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[-1,-2,-3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,3,-2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,-3,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[1,-3,-2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[-1,3,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[-1,3,-2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[-1,-3,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[-1,-3,-2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[2,1,-3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[2,-1,3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[2,-1,-3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[-2,1,3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[-2,1,-3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[-2,-1,3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[-2,-1,-3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 4
[2,3,1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[2,3,-1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[2,-3,1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[2,-3,-1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-2,3,1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-2,3,-1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-2,-3,1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-2,-3,-1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[3,1,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[3,1,-2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[3,-1,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[3,-1,-2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-3,1,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-3,1,-2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-3,-1,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[-3,-1,-2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,-3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,-3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,-2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,-2,3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,-2,-3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,-2,-3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,2,3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,2,-3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,2,-3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,-2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,-2,3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,-2,-3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[-1,-2,-3,-4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,2,4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,2,-4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,2,-4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,-2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,-2,4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,-2,-4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,-2,-4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,2,4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,2,-4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,2,-4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,-2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,-2,4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,-2,-4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[-1,-2,-4,-3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 5
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,3,2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,3,-2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,3,-2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,-3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,-3,2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,-3,-2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,-3,-2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,3,2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,3,-2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,3,-2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,-3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,-3,2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,-3,-2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[-1,-3,-2,-4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 5
[1,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,3,4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,3,-4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,3,-4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
>>> Load all 353 entries. <<<
[1,-3,4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-3,-4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-3,-4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,3,4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,3,-4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,3,-4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-3,4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-3,-4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-3,-4,-2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,4,2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,4,-2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,4,-2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-4,2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-4,-2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[1,-4,-2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,4,2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,4,-2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,4,-2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-4,2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-4,-2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[-1,-4,-2,-3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 5
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,1,3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,1,-3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,1,-3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,-1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,-1,3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,-1,-3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,-1,-3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,1,3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,1,-3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,1,-3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,-1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,-1,3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,-1,-3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[-2,-1,-3,-4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 5
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,1,4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,1,-4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,1,-4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,-1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,-1,4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,-1,-4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,-1,-4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,1,4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,1,-4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,1,-4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,-1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,-1,4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,-1,-4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[-2,-1,-4,-3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 5
[2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,3,1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,3,-1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,3,-1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,-3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,-3,1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,-3,-1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[2,-3,-1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,3,1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,3,-1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,3,-1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,-3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,-3,1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,-3,-1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-2,-3,-1,-4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,1,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,1,2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,1,-2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,1,-2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,-1,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,-1,2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,-1,-2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[3,-1,-2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,1,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,1,2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,1,-2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,1,-2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,-1,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,-1,2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,-1,-2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[-3,-1,-2,-4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 5
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,-3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,-3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,-3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,-3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,-3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,-3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,-3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,-2,-3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,-3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,-3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,-3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,2,-3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,-3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,-3,4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,-3,-4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[-1,-2,-3,-4,-5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,-3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,-3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,-3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,-3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,-3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,-3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,-3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,-2,-3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,-3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,-3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,-3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,2,-3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,-3,5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,-3,5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,-3,-5,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[-1,-2,-3,-5,-4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 6
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,-4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,-4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,-4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,2,-4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,-4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,-4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,-4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,-2,-4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,-4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,-4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,-4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,2,-4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,-4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,-4,3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,-4,-3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[-1,-2,-4,-3,-5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 6
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,-2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,-2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,-2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,3,-2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,-2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,-2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,-2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[1,-3,-2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,-2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,-2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,-2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,3,-2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,-2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,-2,4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,-2,-4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[-1,-3,-2,-4,-5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 6
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,-3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,-3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,-3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,1,-3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,-3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,-3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,-3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[2,-1,-3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,-3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,-3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,-3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,1,-3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,-3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,-3,4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,-3,-4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[-2,-1,-3,-4,-5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 6
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules with projective dimension at most 1.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
permutation
Description
The permutation obtained by forgetting the colours.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$