Identifier
Values
[[3,2,1],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,1],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,1],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3],[3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,1],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2],[2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,2,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,2,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,4],[4]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,1],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,1],[4,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,1],[4]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2],[3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,2],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1,1],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3],[3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,1],[2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,4],[4,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,1],[3,3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,2],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,3],[3,2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,3,1],[2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,2],[2,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[7,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,2,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,3],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,2,2,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,4],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,2],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,2,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3,3],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,2,2,2,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[7,5],[5]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,1],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,1],[3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,3],[3,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,2,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,1],[2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,2,1],[1,1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,6,1],[5,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,5,1],[5]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,2],[4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,2],[4]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,1,1],[4]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2,2],[3,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[[4,3,1,1,1],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,4],[4,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,4],[4,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,1],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,2],[2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,1,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,3],[3,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
>>> Load all 173 entries. <<<
[[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1,1,1],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,5,5],[5,4]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,5,1],[4,4,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,2],[3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,1,1],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,3],[3,3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,3,1],[2,2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,4,4],[4,3,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,4,1],[3,3,3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,2,2],[2,2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,2],[2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,3,3],[3,2,2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,3,3,1],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,2,2],[2,1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,2,2,1,1],[1,1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,1,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,1,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,3,1],[2,2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[[5,4,4,1],[3,3]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2,2,2],[3,1,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 4
[[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,4,2],[3,3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,5,2],[4,4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,3,3],[3,2,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3,3,3],[2,2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,4,3],[3,3,3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,4,4],[4,3,3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,4,4],[3,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,5,4],[4,4,3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,1],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[6,4],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,4],[3,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,3],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,3],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,3],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,3],[2,1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,4],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,4],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,4],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,2],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,2],[2,2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,3,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,2],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,2,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,2,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[3,3,3,2,2],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,3,3,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,2],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,2],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,3],[3]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,5,3],[2]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,3,3],[1,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,3],[3,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[5,4,3],[1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[[4,4,4,3],[2,1]] => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
search for individual values
searching the database for the individual values of this statistic
Description
The number of simple modules with projective dimension at most 1.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function $s_{\lambda/\mu}=\sum_\nu c^\lambda_{\mu, \nu} s_\nu$ as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions $\nu$ with $c^\lambda_{\mu, \nu} > 0$ form a lattice.
The example $\lambda = (5^2,4^2,1)$ and $\mu=(3,2)$ shows that this lattice is not a sublattice of the dominance order.