Identifier
-
Mp00024:
Dyck paths
—to 321-avoiding permutation⟶
Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001876: Lattices ⟶ ℤ (values match St001877Number of indecomposable injective modules with projective dimension 2.)
Values
[1,0,1,0] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,0,0] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,0,0] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,0,0,0] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,0,0,1,0,0] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,0,1,0,0,0] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,0,0,1,0,0] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,0,1,0,0,0] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,4,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,5,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,2,5,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,3,5,2,6,7,4,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0] => [1,3,4,2,6,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0] => [1,4,2,6,3,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,1,0,1,0,0,0,1,0,1,0,0] => [1,4,2,7,3,5,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0] => [1,4,2,3,7,5,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [1,5,2,6,3,7,4,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0] => [1,5,2,7,3,4,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0] => [1,5,2,3,7,4,6,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.
This is the largest quotient of a lattice which is modular.
Map
to 321-avoiding permutation
Description
Sends a Dyck path to a 321-avoiding permutation.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!