Identifier
-
Mp00064:
Permutations
—reverse⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00282: Posets —Dedekind-MacNeille completion⟶ Lattices
St001876: Lattices ⟶ ℤ (values match St001877Number of indecomposable injective modules with projective dimension 2.)
Values
[1,2] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,2,1] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 0
[2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[3,4,2,1] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[4,2,3,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[4,3,1,2] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 0
[3,5,1,4,2] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[3,5,2,4,1] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,2,5,1,3] => [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[4,2,5,3,1] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,5,2,3,1] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[4,5,3,1,2] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[4,5,3,2,1] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[5,2,4,1,3] => [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[5,3,1,4,2] => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[5,3,4,1,2] => [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[5,3,4,2,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[5,4,2,3,1] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[5,4,3,1,2] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,6,2,5,1,4] => [4,1,5,2,6,3] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[4,2,6,1,5,3] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
[4,6,2,5,3,1] => [1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[4,6,3,1,5,2] => [2,5,1,3,6,4] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[4,6,3,5,1,2] => [2,1,5,3,6,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[4,6,3,5,2,1] => [1,2,5,3,6,4] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[5,2,6,4,1,3] => [3,1,4,6,2,5] => ([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[5,3,1,6,4,2] => [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[5,3,6,2,4,1] => [1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[5,3,6,4,1,2] => [2,1,4,6,3,5] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[5,3,6,4,2,1] => [1,2,4,6,3,5] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[5,6,2,4,1,3] => [3,1,4,2,6,5] => ([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[5,6,3,1,4,2] => [2,4,1,3,6,5] => ([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[5,6,3,4,2,1] => [1,2,4,3,6,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 2
[5,6,4,2,3,1] => [1,3,2,4,6,5] => ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[5,6,4,3,1,2] => [2,1,3,4,6,5] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 2
[5,6,4,3,2,1] => [1,2,3,4,6,5] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 1
[6,3,5,1,4,2] => [2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[6,3,5,2,4,1] => [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[6,4,2,5,1,3] => [3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[6,4,2,5,3,1] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[6,4,5,2,3,1] => [1,3,2,5,4,6] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[6,4,5,3,1,2] => [2,1,3,5,4,6] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[6,4,5,3,2,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[6,5,2,4,1,3] => [3,1,4,2,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[6,5,3,1,4,2] => [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[6,5,3,4,1,2] => [2,1,4,3,5,6] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 2
[6,5,3,4,2,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[6,5,4,2,3,1] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[6,5,4,3,1,2] => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[6,5,4,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[4,7,3,6,2,5,1] => [1,5,2,6,3,7,4] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[5,2,7,4,1,6,3] => [3,6,1,4,7,2,5] => ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(6,4),(6,5)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
[5,3,7,2,6,4,1] => [1,4,6,2,7,3,5] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(3,6),(4,1),(4,5)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
[5,7,3,6,4,2,1] => [1,2,4,6,3,7,5] => ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 3
[5,7,4,2,6,3,1] => [1,3,6,2,4,7,5] => ([(0,3),(0,4),(2,5),(3,6),(4,2),(4,6),(6,1),(6,5)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[5,7,4,6,2,3,1] => [1,3,2,6,4,7,5] => ([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[5,7,4,6,3,1,2] => [2,1,3,6,4,7,5] => ([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[5,7,4,6,3,2,1] => [1,2,3,6,4,7,5] => ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 2
[6,3,7,5,2,4,1] => [1,4,2,5,7,3,6] => ([(0,3),(0,4),(2,5),(3,6),(4,2),(4,6),(6,1),(6,5)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[6,4,2,7,5,3,1] => [1,3,5,7,2,4,6] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[6,4,7,3,5,2,1] => [1,2,5,3,7,4,6] => ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 3
[6,4,7,5,2,3,1] => [1,3,2,5,7,4,6] => ([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[6,4,7,5,3,1,2] => [2,1,3,5,7,4,6] => ([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[6,4,7,5,3,2,1] => [1,2,3,5,7,4,6] => ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 2
[6,7,3,5,2,4,1] => [1,4,2,5,3,7,6] => ([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[6,7,4,2,5,3,1] => [1,3,5,2,4,7,6] => ([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[6,7,4,5,3,2,1] => [1,2,3,5,4,7,6] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => 2
[6,7,5,2,4,1,3] => [3,1,4,2,5,7,6] => ([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[6,7,5,3,1,4,2] => [2,4,1,3,5,7,6] => ([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[6,7,5,3,4,2,1] => [1,2,4,3,5,7,6] => ([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 2
[6,7,5,4,2,3,1] => [1,3,2,4,5,7,6] => ([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 2
[6,7,5,4,3,1,2] => [2,1,3,4,5,7,6] => ([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => 2
[6,7,5,4,3,2,1] => [1,2,3,4,5,7,6] => ([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => 1
[7,3,6,2,5,1,4] => [4,1,5,2,6,3,7] => ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[7,4,2,6,1,5,3] => [3,5,1,6,2,4,7] => ([(0,3),(0,6),(1,2),(1,5),(2,6),(3,5),(5,4),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
[7,4,6,2,5,3,1] => [1,3,5,2,6,4,7] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[7,4,6,3,1,5,2] => [2,5,1,3,6,4,7] => ([(0,6),(1,3),(1,6),(2,4),(3,5),(5,4),(6,2),(6,5)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[7,4,6,3,5,1,2] => [2,1,5,3,6,4,7] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[7,4,6,3,5,2,1] => [1,2,5,3,6,4,7] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[7,5,2,6,4,1,3] => [3,1,4,6,2,5,7] => ([(0,6),(1,3),(1,6),(2,4),(3,5),(5,4),(6,2),(6,5)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[7,5,3,1,6,4,2] => [2,4,6,1,3,5,7] => ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 3
[7,5,3,6,2,4,1] => [1,4,2,6,3,5,7] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 3
[7,5,3,6,4,1,2] => [2,1,4,6,3,5,7] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 3
[7,5,3,6,4,2,1] => [1,2,4,6,3,5,7] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[7,5,6,2,4,1,3] => [3,1,4,2,6,5,7] => ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[7,5,6,3,1,4,2] => [2,4,1,3,6,5,7] => ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 3
[7,5,6,3,4,2,1] => [1,2,4,3,6,5,7] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 2
[7,5,6,4,2,3,1] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[7,5,6,4,3,1,2] => [2,1,3,4,6,5,7] => ([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 2
[7,5,6,4,3,2,1] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 1
[7,6,3,5,1,4,2] => [2,4,1,5,3,6,7] => ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 3
[7,6,3,5,2,4,1] => [1,4,2,5,3,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[7,6,4,2,5,1,3] => [3,1,5,2,4,6,7] => ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 3
[7,6,4,2,5,3,1] => [1,3,5,2,4,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[7,6,4,5,2,3,1] => [1,3,2,5,4,6,7] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 2
>>> Load all 112 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
reverse
Description
Sends a permutation to its reverse.
The reverse of a permutation $\sigma$ of length $n$ is given by $\tau$ with $\tau(i) = \sigma(n+1-i)$.
The reverse of a permutation $\sigma$ of length $n$ is given by $\tau$ with $\tau(i) = \sigma(n+1-i)$.
Map
Dedekind-MacNeille completion
Description
Return the smallest lattice containing the poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!