Identifier
Values
[[[]]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[],[[[]]]]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[[]]],[]]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[]],[],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[],[[]]]] => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[[]],[]]] => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[]],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[[]]],[[]]] => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]],[]],[[]]] => ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[[[]]]],[]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[[]]],[]],[]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[],[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[[]],[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[[[]]],[]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]],[],[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]],[[]],[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[[]]],[],[]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[],[[[]]]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[[]],[[]]]]] => ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[[[]]],[]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[],[],[[[]]]] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[],[[]],[[]]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[],[[[]]],[]] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[]],[],[[]]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[]],[[]],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[],[[[]]],[],[]] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[],[],[[]]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[],[[]],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[]],[[]],[],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]]],[],[],[]] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[],[]],[[[]]]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[],[[[]]],[[],[]]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[],[],[[]]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[],[[]],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[],[[]],[],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[]],[[]],[],[],[]] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[],[],[],[]] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[]],[],[[[]]]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[],[[],[]]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[],[]],[[[]]],[]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[[[]]],[[],[]],[]] => ([(0,7),(1,6),(2,6),(3,4),(4,5),(5,7),(6,7)],8) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
search for individual values
searching the database for the individual values of this statistic
Description
Number of indecomposable injective modules with projective dimension 2.
Map
antichains of maximal size
Description
The lattice of antichains of maximal size in a poset.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!