Identifier
Values
00 => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 0
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(2,1)],3) => 0
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(2,1)],3) => 0
11 => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 0
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 0
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 0
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 0
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 0
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
101010 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable injective modules with projective dimension 2.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain $A$ in a poset is maximal if there is no antichain of larger cardinality which contains all elements of $A$.
The set of maximal antichains can be ordered by setting $A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B$, where $\mathop{\downarrow}A$ is the order ideal generated by $A$.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.