Processing math: 100%

Identifier
Values
{{1,2}} => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2}} => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,3},{2}} => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3}} => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,4},{2,3}} => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3},{4}} => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,4},{2},{3}} => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3},{4}} => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,3},{2,5},{4}} => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,5},{2,3,4}} => [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3,4},{5}} => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,5},{2,3},{4}} => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3},{4},{5}} => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,4},{2},{3,5}} => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,5},{2,4},{3}} => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,4},{3},{5}} => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,5},{2},{3,4}} => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3,4},{5}} => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3,4,5}} => [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3,4,5},{6}} => [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3,4},{5}} => [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3,4},{5},{6}} => [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3,5},{4}} => [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3,5},{4},{6}} => [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3},{4,5}} => [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3},{4,5},{6}} => [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3},{4},{5}} => [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3},{4},{5},{6}} => [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,4,5},{3}} => [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,4,5},{3},{6}} => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,4},{3,5}} => [6,4,5,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,4},{3,5},{6}} => [1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,4},{3},{5}} => [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,4},{3},{5},{6}} => [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,5},{3,4},{6}} => [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2},{3,4,5}} => [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3,4,5},{6}} => [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2},{3,4},{5}} => [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3,4},{5},{6}} => [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2,5},{3},{4}} => [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,5},{3},{4},{6}} => [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2},{3,5},{4}} => [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3,5},{4},{6}} => [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2},{3},{4,5}} => [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2},{3},{4,5},{6}} => [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,6},{2},{3},{4},{5}} => [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,3},{4,5},{6,7}} => [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,4},{3,5},{6,7}} => [8,4,5,2,3,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,5},{3,4},{6,7}} => [8,5,4,3,2,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,6},{3,4},{5,7}} => [8,6,4,3,7,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,6},{3,5},{4,7}} => [8,6,5,7,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,4},{3,6},{5,7}} => [8,4,6,2,7,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,3},{4,6},{5,7}} => [8,3,2,6,7,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,3},{4,7},{5,6}} => [8,3,2,7,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,4},{3,7},{5,6}} => [8,4,7,2,6,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,13),(3,13),(4,13),(5,11),(6,10),(7,9),(8,9),(9,13),(10,12),(11,12),(13,10),(13,11)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,5},{3,7},{4,6}} => [8,5,7,6,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,3,4},{5,6,7},{8}} => [1,3,4,2,6,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,8},{2,5},{3},{4,6,7}} => [8,5,3,6,2,7,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,6},{3,7},{4},{5},{8}} => [1,6,7,4,5,2,3,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,5,6},{3,4,7},{8}} => [1,5,4,7,6,2,3,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,13),(2,12),(3,11),(4,11),(5,10),(6,10),(7,9),(8,9),(9,15),(10,14),(11,14),(12,16),(13,16),(14,15),(15,12),(15,13)],17) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2,5},{3},{4,7},{6},{8}} => [1,5,3,7,2,6,4,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,10),(8,9),(9,11),(10,11),(12,9),(12,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation π is a possibly empty interval of values that appear in consecutive positions of π. The lattice of intervals of π has as elements the intervals of π, ordered by set inclusion.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.