Identifier
Values
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(3,1),(3,2)],4) => ([(0,2),(2,1)],3) => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain $A$ in a poset is maximal if there is no antichain of larger cardinality which contains all elements of $A$.
The set of maximal antichains can be ordered by setting $A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B$, where $\mathop{\downarrow}A$ is the order ideal generated by $A$.