Values
=>
Cc0014;cc-rep
([(0,2),(2,1)],3)=>2
([(0,1),(0,2),(1,3),(2,3)],4)=>4
([(0,3),(2,1),(3,2)],4)=>3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>9
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>5
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>6
([(0,4),(2,3),(3,1),(4,2)],5)=>4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>5
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>16
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>10
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>10
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>8
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>10
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>10
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>12
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>7
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>7
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>8
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>6
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>6
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>5
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>6
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>7
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>25
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>17
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>17
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>18
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>11
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>11
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>11
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>15
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>17
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>10
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>11
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>12
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>9
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>16
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>8
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>12
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>17
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>7
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>20
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>13
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>13
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>14
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>12
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>15
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>13
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>13
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>11
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>8
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>9
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>11
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>7
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>9
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>9
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>9
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>8
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>11
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>8
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>9
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>10
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>13
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>12
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>8
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>11
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>11
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>10
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>6
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>13
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>8
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>9
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>11
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>7
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>7
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>9
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Code
DeclareOperation("daP1top",[IsList]); InstallMethod(daP1top, "for a representation of a quiver", [IsList],0,function(LIST) local A,L,LL,M,B,n,T,D,injA,W,simA,S,P,projA,R,RegA,CoRegA; A:=LIST[1]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); T:=TopOfModule(NthSyzygy(CoRegA,1)); return(Dimension(T)); end);
Created
Oct 03, 2020 at 20:51 by Rene Marczinzik
Updated
Oct 03, 2020 at 20:51 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!