edit this statistic or download as text // json
Identifier
Values
=>
Cc0014;cc-rep
([(0,2),(2,1)],3)=>2 ([(0,1),(0,2),(1,3),(2,3)],4)=>4 ([(0,3),(2,1),(3,2)],4)=>3 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>9 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>5 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>6 ([(0,4),(2,3),(3,1),(4,2)],5)=>4 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>5 ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>16 ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>10 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>10 ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>8 ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>10 ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>10 ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>12 ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>7 ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>7 ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>8 ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>6 ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>6 ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>5 ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>6 ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>7 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>25 ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>17 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>17 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>18 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>11 ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>11 ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>11 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>15 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>17 ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>10 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>11 ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>12 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>9 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>16 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>8 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>12 ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>17 ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>7 ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>20 ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>13 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>13 ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>14 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>12 ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>15 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>13 ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>13 ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>11 ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>8 ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>9 ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>11 ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>7 ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>9 ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>9 ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>9 ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>8 ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>11 ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>8 ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>9 ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>10 ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>13 ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>12 ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>8 ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>11 ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>11 ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>10 ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>6 ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>13 ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>8 ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>9 ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>11 ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>7 ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>7 ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>9
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Code

DeclareOperation("daP1top",[IsList]);

InstallMethod(daP1top, "for a representation of a quiver", [IsList],0,function(LIST)

local A,L,LL,M,B,n,T,D,injA,W,simA,S,P,projA,R,RegA,CoRegA;

A:=LIST[1];
CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A));
T:=TopOfModule(NthSyzygy(CoRegA,1));
return(Dimension(T));

end);

Created
Oct 03, 2020 at 20:51 by Rene Marczinzik
Updated
Oct 03, 2020 at 20:51 by Rene Marczinzik