Identifier
-
Mp00018:
Binary trees
—left border symmetry⟶
Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤ
Values
[.,[.,[.,.]]] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 2
[.,[[.,.],.]] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 2
[[.,.],[.,.]] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 2
[[[.,.],.],.] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => 2
[.,[.,[.,[.,.]]]] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[.,[[.,.],.]]] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[[.,.],[.,.]]] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[[[.,.],.],.]] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[[.,.],[.,[.,.]]] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[.,.],[[.,.],.]] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[[.,.],.],[.,.]] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[[[.,.],.],.],.] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[.,[.,[.,[.,.]]]]] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[.,[[.,.],.]]]] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[[.,.],[.,.]]]] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[[[.,.],.],.]]] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[.,.],[.,[.,.]]]] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[.,.],[[.,.],.]]] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[[.,.],.],[.,.]]] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[[[.,.],.],.],.]] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,.],[.,[.,[.,.]]]] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,.],[.,[[.,.],.]]] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,.],[[.,.],[.,.]]] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,.],[[[.,.],.],.]] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[.,.],.],[.,[.,.]]] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[.,.],.],[[.,.],.]] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[[.,.],.],.],[.,.]] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[[[.,.],.],.],.],.] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[.,[.,[.,[.,.]]]]]] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[.,[[.,.],.]]]]] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[[.,.],[.,.]]]]] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[[[.,.],.],.]]]] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[.,.],[.,[.,.]]]]] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[.,.],[[.,.],.]]]] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[[.,.],.],[.,.]]]] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[[[.,.],.],.],.]]] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,.],[.,[.,[.,.]]]]] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,.],[.,[[.,.],.]]]] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,.],[[.,.],[.,.]]]] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,.],[[[.,.],.],.]]] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[[.,.],.],[.,[.,.]]]] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[[.,.],.],[[.,.],.]]] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[[[.,.],.],.],[.,.]]] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[[[[.,.],.],.],.],.]] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[.,[.,[.,[.,.]]]]] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[.,[.,[[.,.],.]]]] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[.,[[.,.],[.,.]]]] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[.,[[[.,.],.],.]]] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[[.,.],[.,[.,.]]]] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[[.,.],[[.,.],.]]] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[[[.,.],.],[.,.]]] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[.,.],[[[[.,.],.],.],.]] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[.,.],.],[.,[.,[.,.]]]] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[.,.],.],[.,[[.,.],.]]] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[.,.],.],[[.,.],[.,.]]] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[.,.],.],[[[.,.],.],.]] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[[.,.],.],.],[.,[.,.]]] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[[.,.],.],.],[[.,.],.]] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[[[.,.],.],.],.],[.,.]] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[[[[[[.,.],.],.],.],.],.] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[.,[.,[.,[.,.]]]]]]] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[.,[.,[[.,.],.]]]]]] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[.,[[.,.],[.,.]]]]]] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[.,[[[.,.],.],.]]]]] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[[.,.],[.,[.,.]]]]]] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[[.,.],[[.,.],.]]]]] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[[[.,.],.],[.,.]]]]] => [.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[.,[[[[.,.],.],.],.]]]] => [.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[.,.],[.,[.,[.,.]]]]]] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[.,.],[.,[[.,.],.]]]]] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[.,.],[[.,.],[.,.]]]]] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[.,.],[[[.,.],.],.]]]] => [.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[[.,.],.],[.,[.,.]]]]] => [.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[[.,.],.],[[.,.],.]]]] => [.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[[[.,.],.],.],[.,.]]]] => [.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[.,[[[[[.,.],.],.],.],.]]] => [.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[.,[.,[.,[.,.]]]]]] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[.,[.,[[.,.],.]]]]] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[.,[[.,.],[.,.]]]]] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[.,[[[.,.],.],.]]]] => [.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[[.,.],[.,[.,.]]]]] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[[.,.],[[.,.],.]]]] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[[[.,.],.],[.,.]]]] => [.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[.,.],[[[[.,.],.],.],.]]] => [.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[.,.],.],[.,[.,[.,.]]]]] => [.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[.,.],.],[.,[[.,.],.]]]] => [.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[.,.],.],[[.,.],[.,.]]]] => [.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[.,.],.],[[[.,.],.],.]]] => [.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[[.,.],.],.],[.,[.,.]]]] => [.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[[.,.],.],.],[[.,.],.]]] => [.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[[[.,.],.],.],.],[.,.]]] => [.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[.,[[[[[[.,.],.],.],.],.],.]] => [.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[.,[.,[.,[.,.]]]]]] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[.,[.,[[.,.],.]]]]] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[.,[[.,.],[.,.]]]]] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[.,[[[.,.],.],.]]]] => [[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[[.,.],[.,[.,.]]]]] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[[.,.],[[.,.],.]]]] => [[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[[[.,.],.],[.,.]]]] => [[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[.,[[[[.,.],.],.],.]]] => [[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[[.,.],[[.,.],[.,[.,[.,.]]]]] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
>>> Load all 124 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
left border symmetry
Description
Return the tree where a symmetry has been applied recursively on all left borders. If a tree is made of three trees $T_1, T_2, T_3$ on its left border, it becomes $T_3, T_2, T_1$ where same symmetry has been applied to $T_1, T_2, T_3$.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!