Identifier
Values
[1,0,1,0,1,0] => [.,[.,[.,.]]] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 2
[1,0,1,1,0,0] => [.,[[.,.],.]] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 2
[1,1,0,0,1,0] => [[.,.],[.,.]] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 2
[1,1,1,0,0,0] => [[[.,.],.],.] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => 2
[1,0,1,0,1,0,1,0] => [.,[.,[.,[.,.]]]] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,0,1,1,0,0] => [.,[.,[[.,.],.]]] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,1,0,0,1,0] => [.,[[.,.],[.,.]]] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,1,1,0,0,0] => [.,[[[.,.],.],.]] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,0,0,1,0,1,0] => [[.,.],[.,[.,.]]] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,0,0,1,1,0,0] => [[.,.],[[.,.],.]] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,0,0,0,1,0] => [[[.,.],.],[.,.]] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,1,0,0,0,0] => [[[[.,.],.],.],.] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,.]]]]] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[[.,.],.]]]] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,0,1,1,0,0,1,0] => [.,[.,[[.,.],[.,.]]]] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,0,1,1,1,0,0,0] => [.,[.,[[[.,.],.],.]]] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,0,1,0,1,0] => [.,[[.,.],[.,[.,.]]]] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,0,1,1,0,0] => [.,[[.,.],[[.,.],.]]] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,1,0,0,0,1,0] => [.,[[[.,.],.],[.,.]]] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,1,1,0,0,0,0] => [.,[[[[.,.],.],.],.]] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,0,1,0,1,0,1,0] => [[.,.],[.,[.,[.,.]]]] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,0,1,0,1,1,0,0] => [[.,.],[.,[[.,.],.]]] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,0,1,1,0,0,1,0] => [[.,.],[[.,.],[.,.]]] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,0,1,1,1,0,0,0] => [[.,.],[[[.,.],.],.]] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,0,0,1,0,1,0] => [[[.,.],.],[.,[.,.]]] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,0,0,1,1,0,0] => [[[.,.],.],[[.,.],.]] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,0,0,0,0,1,0] => [[[[.,.],.],.],[.,.]] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,1,0,0,0,0,0] => [[[[[.,.],.],.],.],.] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,.]]]]]] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[[.,.],[.,.]]]]] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [.,[.,[.,[[[.,.],.],.]]]] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[[.,.],[.,[.,.]]]]] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,.],[[.,.],.]]]] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [.,[.,[[[.,.],.],[.,.]]]] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [.,[.,[[[[.,.],.],.],.]]] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [.,[[.,.],[.,[.,[.,.]]]]] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,.],[.,[[.,.],.]]]] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,.],[[.,.],[.,.]]]] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [.,[[.,.],[[[.,.],.],.]]] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,0,0,0,1,0,1,0] => [.,[[[.,.],.],[.,[.,.]]]] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [.,[[[.,.],.],[[.,.],.]]] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,1,0,0,0,0,1,0] => [.,[[[[.,.],.],.],[.,.]]] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,1,1,0,0,0,0,0] => [.,[[[[[.,.],.],.],.],.]] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,0,1,0,1,0,1,0] => [[.,.],[.,[.,[.,[.,.]]]]] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [[.,.],[.,[.,[[.,.],.]]]] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,0,1,1,0,0,1,0] => [[.,.],[.,[[.,.],[.,.]]]] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,0,1,1,1,0,0,0] => [[.,.],[.,[[[.,.],.],.]]] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,1,0,0,1,0,1,0] => [[.,.],[[.,.],[.,[.,.]]]] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,1,0,0,1,1,0,0] => [[.,.],[[.,.],[[.,.],.]]] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,1,1,0,0,0,1,0] => [[.,.],[[[.,.],.],[.,.]]] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,1,1,1,0,0,0,0] => [[.,.],[[[[.,.],.],.],.]] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,0,1,0,1,0] => [[[.,.],.],[.,[.,[.,.]]]] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,0,1,1,0,0] => [[[.,.],.],[.,[[.,.],.]]] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,1,0,0,1,0] => [[[.,.],.],[[.,.],[.,.]]] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,1,1,0,0,0] => [[[.,.],.],[[[.,.],.],.]] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,0,1,0,1,0] => [[[[.,.],.],.],[.,[.,.]]] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,0,1,1,0,0] => [[[[.,.],.],.],[[.,.],.]] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,0,0,0,0,1,0] => [[[[[.,.],.],.],.],[.,.]] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,1,0,0,0,0,0,0] => [[[[[[.,.],.],.],.],.],.] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[.,[[.,.],[.,.]]]]]] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[.,[[.,.],[.,[.,.]]]]]] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,.],[[.,.],.]]]]] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [.,[.,[.,[[[.,.],.],[.,.]]]]] => [.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [.,[.,[.,[[[[.,.],.],.],.]]]] => [.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [.,[.,[[.,.],[.,[.,[.,.]]]]]] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [.,[.,[[.,.],[.,[[.,.],.]]]]] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [.,[.,[[.,.],[[.,.],[.,.]]]]] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [.,[.,[[.,.],[[[.,.],.],.]]]] => [.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => [.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [.,[.,[[[.,.],.],[[.,.],.]]]] => [.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [.,[.,[[[[.,.],.],.],[.,.]]]] => [.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [.,[.,[[[[[.,.],.],.],.],.]]] => [.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [.,[[.,.],[.,[.,[.,[.,.]]]]]] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [.,[[.,.],[.,[.,[[.,.],.]]]]] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [.,[[.,.],[.,[[[.,.],.],.]]]] => [.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [.,[[.,.],[[.,.],[.,[.,.]]]]] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [.,[[.,.],[[.,.],[[.,.],.]]]] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [.,[[.,.],[[[.,.],.],[.,.]]]] => [.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [.,[[.,.],[[[[.,.],.],.],.]]] => [.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [.,[[[.,.],.],[.,[.,[.,.]]]]] => [.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [.,[[[.,.],.],[.,[[.,.],.]]]] => [.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [.,[[[.,.],.],[[.,.],[.,.]]]] => [.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [.,[[[.,.],.],[[[.,.],.],.]]] => [.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [.,[[[[.,.],.],.],[.,[.,.]]]] => [.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [.,[[[[.,.],.],.],[[.,.],.]]] => [.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [.,[[[[[.,.],.],.],.],[.,.]]] => [.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [.,[[[[[[.,.],.],.],.],.],.]] => [.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [[.,.],[.,[.,[.,[.,[.,.]]]]]] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[.,.],[.,[.,[.,[[.,.],.]]]]] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[.,.],[.,[.,[[.,.],[.,.]]]]] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [[.,.],[.,[.,[[[.,.],.],.]]]] => [[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[.,.],[.,[[.,.],[.,[.,.]]]]] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[.,.],[.,[[.,.],[[.,.],.]]]] => [[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [[.,.],[.,[[[.,.],.],[.,.]]]] => [[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [[.,.],[.,[[[[.,.],.],.],.]]] => [[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[.,.],[[.,.],[.,[.,[.,.]]]]] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
>>> Load all 124 entries. <<<
[1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[.,.],[[.,.],[.,[[.,.],.]]]] => [[.,[[.,[.,[[.,.],.]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[.,.],[[.,.],[[.,.],[.,.]]]] => [[.,[[.,[[.,[.,.]],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [[.,.],[[.,.],[[[.,.],.],.]]] => [[.,[[.,[[[.,.],.],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [[.,.],[[[.,.],.],[.,[.,.]]]] => [[.,[[[.,[.,[.,.]]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [[.,.],[[[.,.],.],[[.,.],.]]] => [[.,[[[.,[[.,.],.]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [[.,.],[[[[.,.],.],.],[.,.]]] => [[.,[[[[.,[.,.]],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [[.,.],[[[[[.,.],.],.],.],.]] => [[.,[[[[[.,.],.],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [[[.,.],.],[.,[.,[.,[.,.]]]]] => [[[.,[.,[.,[.,[.,.]]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [[[.,.],.],[.,[.,[[.,.],.]]]] => [[[.,[.,[.,[[.,.],.]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [[[.,.],.],[.,[[.,.],[.,.]]]] => [[[.,[.,[[.,[.,.]],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [[[.,.],.],[.,[[[.,.],.],.]]] => [[[.,[.,[[[.,.],.],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [[[.,.],.],[[.,.],[.,[.,.]]]] => [[[.,[[.,[.,[.,.]]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [[[.,.],.],[[.,.],[[.,.],.]]] => [[[.,[[.,[[.,.],.]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [[[.,.],.],[[[.,.],.],[.,.]]] => [[[.,[[[.,[.,.]],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [[[.,.],.],[[[[.,.],.],.],.]] => [[[.,[[[[.,.],.],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [[[[.,.],.],.],[.,[.,[.,.]]]] => [[[[.,[.,[.,[.,.]]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [[[[.,.],.],.],[.,[[.,.],.]]] => [[[[.,[.,[[.,.],.]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [[[[.,.],.],.],[[.,.],[.,.]]] => [[[[.,[[.,[.,.]],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [[[[.,.],.],.],[[[.,.],.],.]] => [[[[.,[[[.,.],.],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [[[[[.,.],.],.],.],[.,[.,.]]] => [[[[[.,[.,[.,.]]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [[[[[.,.],.],.],.],[[.,.],.]] => [[[[[.,[[.,.],.]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [[[[[[.,.],.],.],.],.],[.,.]] => [[[[[[.,[.,.]],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [[[[[[[.,.],.],.],.],.],.],.] => [[[[[[[.,.],.],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
to binary tree: up step, left tree, down step, right tree
Description
Return the binary tree corresponding to the Dyck path under the transformation up step - left tree - down step - right tree.
A Dyck path $D$ of semilength $n$ with $ n > 1$ may be uniquely decomposed into $1L0R$ for Dyck paths L,R of respective semilengths $n_1, n_2$ with $n_1 + n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
left border symmetry
Description
Return the tree where a symmetry has been applied recursively on all left borders. If a tree is made of three trees $T_1, T_2, T_3$ on its left border, it becomes $T_3, T_2, T_1$ where same symmetry has been applied to $T_1, T_2, T_3$.