Identifier
-
Mp00122:
Dyck paths
—Elizalde-Deutsch bijection⟶
Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤ
Values
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 2
[1,1,0,0,1,0] => [1,1,1,0,0,0] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => 2
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 2
[1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [[.,[[[.,[[.,.],.]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [[.,[[[.,[.,[.,.]]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [[.,[[.,[[.,[.,.]],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [[.,[[[[[.,.],.],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [[.,[[.,[.,[[.,.],.]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [[.,[[.,[[[.,.],.],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [[.,[[[[.,[.,.]],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [[[[.,[.,[[.,.],.]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [[[[.,[.,[.,[.,.]]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [[[[.,[[[.,.],.],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [[[[.,[[.,[.,.]],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,1,0,0,0] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,1,0,0,0] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [[[.,[[.,[.,[.,.]]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [[[[[[.,[.,.]],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [[[.,[[.,[[.,.],.]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [[[.,[[[[.,.],.],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,0,1,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [[[[[.,[[.,.],.]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [[[[[[[.,.],.],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,1,1,1,0,0,0,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [[[.,[.,[[.,[.,.]],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
>>> Load all 124 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
to binary tree: up step, left tree, down step, right tree
Description
Return the binary tree corresponding to the Dyck path under the transformation up step - left tree - down step - right tree.
A Dyck path $D$ of semilength $n$ with $ n > 1$ may be uniquely decomposed into $1L0R$ for Dyck paths L,R of respective semilengths $n_1, n_2$ with $n_1 + n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
A Dyck path $D$ of semilength $n$ with $ n > 1$ may be uniquely decomposed into $1L0R$ for Dyck paths L,R of respective semilengths $n_1, n_2$ with $n_1 + n_2 = n-1$.
This map sends $D$ to the binary tree $T$ consisting of a root node with a left child according to $L$ and a right child according to $R$ and then recursively proceeds.
The base case of the unique Dyck path of semilength $1$ is sent to a single node.
Map
Elizalde-Deutsch bijection
Description
The Elizalde-Deutsch bijection on Dyck paths.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!