Identifier
-
Mp00068:
Permutations
—Simion-Schmidt map⟶
Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001879: Posets ⟶ ℤ
Values
[3,2,1] => [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3) => 2
[4,2,3,1] => [4,2,3,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 3
[5,2,3,4,1] => [5,2,4,3,1] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 6
[5,2,4,3,1] => [5,2,4,3,1] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 6
[5,3,2,4,1] => [5,3,2,4,1] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 6
[5,3,4,2,1] => [5,3,4,2,1] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[5,4,2,3,1] => [5,4,2,3,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[6,2,3,4,5,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,2,3,5,4,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,2,4,3,5,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,2,4,5,3,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,2,5,3,4,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,2,5,4,3,1] => [6,2,5,4,3,1] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,3,2,4,5,1] => [6,3,2,5,4,1] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 8
[6,3,2,5,4,1] => [6,3,2,5,4,1] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 8
[6,3,4,2,5,1] => [6,3,5,2,4,1] => [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[6,3,4,5,2,1] => [6,3,5,4,2,1] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 7
[6,3,5,2,4,1] => [6,3,5,2,4,1] => [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[6,3,5,4,2,1] => [6,3,5,4,2,1] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 7
[6,4,2,3,5,1] => [6,4,2,5,3,1] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[6,4,2,5,3,1] => [6,4,2,5,3,1] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[6,4,3,2,5,1] => [6,4,3,2,5,1] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8
[6,4,3,5,2,1] => [6,4,3,5,2,1] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 7
[6,4,5,3,2,1] => [6,4,5,3,2,1] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[6,5,2,3,4,1] => [6,5,2,4,3,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 7
[6,5,2,4,3,1] => [6,5,2,4,3,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 7
[6,5,3,2,4,1] => [6,5,3,2,4,1] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 7
[6,5,3,4,2,1] => [6,5,3,4,2,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[6,5,4,2,3,1] => [6,5,4,2,3,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[7,2,3,4,5,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,3,4,6,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,3,5,4,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,3,5,6,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,3,6,4,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,3,6,5,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,3,5,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,3,6,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,5,3,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,5,6,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,6,3,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,4,6,5,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,3,4,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,3,6,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,4,3,6,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,4,6,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,6,3,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,5,6,4,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,3,4,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,3,5,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,4,3,5,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,4,5,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,5,3,4,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,2,6,5,4,3,1] => [7,2,6,5,4,3,1] => [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 10
[7,3,2,4,5,6,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,2,4,6,5,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,2,5,4,6,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,2,5,6,4,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,2,6,4,5,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,2,6,5,4,1] => [7,3,2,6,5,4,1] => [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,3,4,2,5,6,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,4,2,6,5,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,4,5,2,6,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,4,5,6,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,3,4,6,2,5,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,4,6,5,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,3,5,2,4,6,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,5,2,6,4,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,5,4,2,6,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,5,4,6,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,3,5,6,2,4,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,5,6,4,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,3,6,2,4,5,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,6,2,5,4,1] => [7,3,6,2,5,4,1] => [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 9
[7,3,6,4,2,5,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,6,4,5,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,3,6,5,2,4,1] => [7,3,6,5,2,4,1] => [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => 9
[7,3,6,5,4,2,1] => [7,3,6,5,4,2,1] => [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 9
[7,4,2,3,5,6,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,2,3,6,5,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,2,5,3,6,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,2,5,6,3,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,2,6,3,5,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,2,6,5,3,1] => [7,4,2,6,5,3,1] => [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,3,2,5,6,1] => [7,4,3,2,6,5,1] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,4,3,2,6,5,1] => [7,4,3,2,6,5,1] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 10
[7,4,3,5,2,6,1] => [7,4,3,6,2,5,1] => [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,3,5,6,2,1] => [7,4,3,6,5,2,1] => [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 9
[7,4,3,6,2,5,1] => [7,4,3,6,2,5,1] => [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 9
[7,4,3,6,5,2,1] => [7,4,3,6,5,2,1] => [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 9
[7,4,5,3,2,6,1] => [7,4,6,3,2,5,1] => [1,4,2,5,6,3,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 9
[7,4,5,3,6,2,1] => [7,4,6,3,5,2,1] => [1,4,2,5,3,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 8
[7,4,5,6,3,2,1] => [7,4,6,5,3,2,1] => [1,4,2,3,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 8
[7,4,6,3,2,5,1] => [7,4,6,3,2,5,1] => [1,4,2,5,6,3,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 9
[7,4,6,3,5,2,1] => [7,4,6,3,5,2,1] => [1,4,2,5,3,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 8
[7,4,6,5,3,2,1] => [7,4,6,5,3,2,1] => [1,4,2,3,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 8
[7,5,2,3,4,6,1] => [7,5,2,6,4,3,1] => [1,3,6,2,4,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 9
[7,5,2,3,6,4,1] => [7,5,2,6,4,3,1] => [1,3,6,2,4,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 9
[7,5,2,4,3,6,1] => [7,5,2,6,4,3,1] => [1,3,6,2,4,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 9
>>> Load all 138 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
complement
Description
Sents a permutation to its complement.
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
Map
Simion-Schmidt map
Description
The Simion-Schmidt map sends any permutation to a $123$-avoiding permutation.
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!