Identifier
Values
[1,2,3] => [3] => [[3],[]] => ([(0,2),(2,1)],3) => 2
[3,2,1] => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => 2
[1,2,3,4] => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => 3
[2,1,4,3] => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[2,4,1,3] => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[3,1,4,2] => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[3,4,1,2] => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[4,3,2,1] => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 3
[1,2,3,4,5] => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[5,4,3,2,1] => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,2,3,4,5,6] => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[2,1,4,3,6,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,1,4,6,3,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,1,5,3,6,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,1,5,6,3,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,4,1,3,6,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,4,1,6,3,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,4,6,1,3,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,5,1,3,6,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,5,1,6,3,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[2,5,6,1,3,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,1,4,2,6,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,1,4,6,2,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,1,5,2,6,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,1,5,6,2,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,2,1,6,5,4] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,2,6,1,5,4] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,2,6,5,1,4] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,4,1,2,6,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,4,1,6,2,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,4,6,1,2,5] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,5,1,2,6,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,5,1,6,2,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,5,6,1,2,4] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,6,2,1,5,4] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[3,6,2,5,1,4] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,1,5,2,6,3] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,1,5,6,2,3] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,2,1,6,5,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,2,6,1,5,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,2,6,5,1,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,3,1,6,5,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,3,6,1,5,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,3,6,5,1,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,5,1,2,6,3] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,5,1,6,2,3] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,5,6,1,2,3] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,6,2,1,5,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,6,2,5,1,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,6,3,1,5,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[4,6,3,5,1,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,2,1,6,4,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,2,6,1,4,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,2,6,4,1,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,3,1,6,4,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,3,6,1,4,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,3,6,4,1,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,6,2,1,4,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,6,2,4,1,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,6,3,1,4,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[5,6,3,4,1,2] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[6,5,4,3,2,1] => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,2,3,4,5,6,7] => [7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[7,6,5,4,3,2,1] => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
Robinson-Schensted tableau shape
Description
Sends a permutation to its Robinson-Schensted tableau shape.
The Robinson-Schensted corrspondence is a bijection between permutations of length $n$ and pairs of standard Young tableaux of the same shape and of size $n$, see [1]. These two tableaux are the insertion tableau and the recording tableau.
This map sends a permutation to the shape of its corresponding insertion and recording tableau.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.