Processing math: 100%

Identifier
Values
[.,[[.,.],.]] => [1,1,0,1,0,0] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => 3
[[.,.],[.,.]] => [1,0,1,1,0,0] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 3
[[.,[.,.]],.] => [1,1,0,0,1,0] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 3
[[[.,.],.],.] => [1,0,1,0,1,0] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 3
[.,[[[.,.],.],.]] => [1,1,0,1,0,1,0,0] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[.,.],[[.,.],.]] => [1,0,1,1,0,1,0,0] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[[.,[.,.]],[.,.]] => [1,1,0,0,1,1,0,0] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[.,.],.],[.,.]] => [1,0,1,0,1,1,0,0] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 4
[[.,[[.,.],.]],.] => [1,1,0,1,0,0,1,0] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[.,.],[.,.]],.] => [1,0,1,1,0,0,1,0] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[[[.,[.,.]],.],.] => [1,1,0,0,1,0,1,0] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[[.,.],.],.],.] => [1,0,1,0,1,0,1,0] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 4
[.,[[[[.,.],.],.],.]] => [1,1,0,1,0,1,0,1,0,0] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,.],[[[.,.],.],.]] => [1,0,1,1,0,1,0,1,0,0] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,[.,.]],[[.,.],.]] => [1,1,0,0,1,1,0,1,0,0] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,.],.],[[.,.],.]] => [1,0,1,0,1,1,0,1,0,0] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,[[.,.],.]],[.,.]] => [1,1,0,1,0,0,1,1,0,0] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,.],[.,.]],[.,.]] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,[.,.]],.],[.,.]] => [1,1,0,0,1,0,1,1,0,0] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[.,.],.],.],[.,.]] => [1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,[[[.,.],.],.]],.] => [1,1,0,1,0,1,0,0,1,0] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,.],[[.,.],.]],.] => [1,0,1,1,0,1,0,0,1,0] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,[.,.]],[.,.]],.] => [1,1,0,0,1,1,0,0,1,0] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[.,.],.],[.,.]],.] => [1,0,1,0,1,1,0,0,1,0] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[.,[[.,.],.]],.],.] => [1,1,0,1,0,0,1,0,1,0] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[.,.],[.,.]],.],.] => [1,0,1,1,0,0,1,0,1,0] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[.,[.,.]],.],.],.] => [1,1,0,0,1,0,1,0,1,0] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[[.,.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[.,[[[[[.,.],.],.],.],.]] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,.],[[[[.,.],.],.],.]] => [1,0,1,1,0,1,0,1,0,1,0,0] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,[.,.]],[[[.,.],.],.]] => [1,1,0,0,1,1,0,1,0,1,0,0] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],.],[[[.,.],.],.]] => [1,0,1,0,1,1,0,1,0,1,0,0] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,[[.,.],.]],[[.,.],.]] => [1,1,0,1,0,0,1,1,0,1,0,0] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],[.,.]],[[.,.],.]] => [1,0,1,1,0,0,1,1,0,1,0,0] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[.,.]],.],[[.,.],.]] => [1,1,0,0,1,0,1,1,0,1,0,0] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],.],.],[[.,.],.]] => [1,0,1,0,1,0,1,1,0,1,0,0] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,[[[.,.],.],.]],[.,.]] => [1,1,0,1,0,1,0,0,1,1,0,0] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],[[.,.],.]],[.,.]] => [1,0,1,1,0,1,0,0,1,1,0,0] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[.,.]],[.,.]],[.,.]] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],.],[.,.]],[.,.]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[[.,.],.]],.],[.,.]] => [1,1,0,1,0,0,1,0,1,1,0,0] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],[.,.]],.],[.,.]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,[.,.]],.],.],[.,.]] => [1,1,0,0,1,0,1,0,1,1,0,0] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[.,.],.],.],.],[.,.]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,[[[[.,.],.],.],.]],.] => [1,1,0,1,0,1,0,1,0,0,1,0] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],[[[.,.],.],.]],.] => [1,0,1,1,0,1,0,1,0,0,1,0] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[.,.]],[[.,.],.]],.] => [1,1,0,0,1,1,0,1,0,0,1,0] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],.],[[.,.],.]],.] => [1,0,1,0,1,1,0,1,0,0,1,0] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[[.,.],.]],[.,.]],.] => [1,1,0,1,0,0,1,1,0,0,1,0] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],[.,.]],[.,.]],.] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,[.,.]],.],[.,.]],.] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[.,.],.],.],[.,.]],.] => [1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,[[[.,.],.],.]],.],.] => [1,1,0,1,0,1,0,0,1,0,1,0] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],[[.,.],.]],.],.] => [1,0,1,1,0,1,0,0,1,0,1,0] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,[.,.]],[.,.]],.],.] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[.,.],.],[.,.]],.],.] => [1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,[[.,.],.]],.],.],.] => [1,1,0,1,0,0,1,0,1,0,1,0] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[.,.],[.,.]],.],.],.] => [1,0,1,1,0,0,1,0,1,0,1,0] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[.,[.,.]],.],.],.],.] => [1,1,0,0,1,0,1,0,1,0,1,0] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[[.,.],.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[[[[[[.,.],.],.],.],.],.]] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [[[[[[[.,.],.],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[[[[[.,.],.],.],.],.]] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,[.,.]],[[[[.,.],.],.],.]] => [1,1,0,0,1,1,0,1,0,1,0,1,0,0] => [[.,[[[[[.,.],.],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],.],[[[[.,.],.],.],.]] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,[[.,.],.]],[[[.,.],.],.]] => [1,1,0,1,0,0,1,1,0,1,0,1,0,0] => [[[.,[[[[.,.],.],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],[.,.]],[[[.,.],.],.]] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[.,.]],.],[[[.,.],.],.]] => [1,1,0,0,1,0,1,1,0,1,0,1,0,0] => [[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],.],[[[.,.],.],.]] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,[[[.,.],.],.]],[[.,.],.]] => [1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [[[[.,[[[.,.],.],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],[[.,.],.]],[[.,.],.]] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[.,.]],[.,.]],[[.,.],.]] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [[.,[[.,[[[.,.],.],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],[.,.]],[[.,.],.]] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[.,.],.]],.],[[.,.],.]] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [[[.,[.,[[[.,.],.],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],[.,.]],.],[[.,.],.]] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],.],.],[[.,.],.]] => [1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],.],.],[[.,.],.]] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,[[[[.,.],.],.],.]],[.,.]] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [[[[[.,[[.,.],.]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],[[[.,.],.],.]],[.,.]] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[.,.]],[[.,.],.]],[.,.]] => [1,1,0,0,1,1,0,1,0,0,1,1,0,0] => [[.,[[[.,[[.,.],.]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],[[.,.],.]],[.,.]] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[.,.],.]],[.,.]],[.,.]] => [1,1,0,1,0,0,1,1,0,0,1,1,0,0] => [[[.,[[.,[[.,.],.]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],[.,.]],[.,.]],[.,.]] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],.],[.,.]],[.,.]] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],.],[.,.]],[.,.]] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[[.,.],.],.]],.],[.,.]] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [[[[.,[.,[[.,.],.]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],[[.,.],.]],.],[.,.]] => [1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],[.,.]],.],[.,.]] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[.,[[.,[.,[[.,.],.]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],[.,.]],.],[.,.]] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[[.,.],.]],.],.],[.,.]] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [[[.,[.,[.,[[.,.],.]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],[.,.]],.],.],[.,.]] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,[.,.]],.],.],.],[.,.]] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],.],.],.],.],[.,.]] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,[[[[[.,.],.],.],.],.]],.] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [[[[[[.,[.,.]],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],[[[[.,.],.],.],.]],.] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[.,.]],[[[.,.],.],.]],.] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [[.,[[[[.,[.,.]],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],[[[.,.],.],.]],.] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[.,.],.]],[[.,.],.]],.] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [[[.,[[[.,[.,.]],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],[.,.]],[[.,.],.]],.] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],.],[[.,.],.]],.] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],.],[[.,.],.]],.] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[[.,.],.],.]],[.,.]],.] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [[[[.,[[.,[.,.]],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
>>> Load all 124 entries. <<<
[[[[.,.],[[.,.],.]],[.,.]],.] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],[.,.]],[.,.]],.] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[.,[[.,[[.,[.,.]],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],[.,.]],[.,.]],.] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[[.,.],.]],.],[.,.]],.] => [1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [[[.,[.,[[.,[.,.]],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],[.,.]],.],[.,.]],.] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,[.,.]],.],.],[.,.]],.] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],.],.],.],[.,.]],.] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,[[[[.,.],.],.],.]],.],.] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [[[[[.,[.,[.,.]]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],[[[.,.],.],.]],.],.] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[.,.]],[[.,.],.]],.],.] => [1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [[.,[[[.,[.,[.,.]]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],[[.,.],.]],.],.] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[[.,.],.]],[.,.]],.],.] => [1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [[[.,[[.,[.,[.,.]]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],[.,.]],[.,.]],.],.] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,[.,.]],.],[.,.]],.],.] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],.],.],[.,.]],.],.] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,[[[.,.],.],.]],.],.],.] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [[[[.,[.,[.,[.,.]]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],[[.,.],.]],.],.],.] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,[.,.]],[.,.]],.],.],.] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],.],[.,.]],.],.],.] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,[[.,.],.]],.],.],.],.] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [[[.,[.,[.,[.,[.,.]]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],[.,.]],.],.],.],.] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,[.,.]],.],.],.],.],.] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[[.,.],.],.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
logarithmic height to pruning number
Description
Francon's map from Dyck paths to binary trees.
This bijection sends the logarithmic height of the Dyck path, St000920The logarithmic height of a Dyck path., to the pruning number of the binary tree, St000396The register function (or Horton-Strahler number) of a binary tree.. The implementation is a literal translation of Knuth's [2].
Map
to Tamari-corresponding Dyck path
Description
Return the Dyck path associated with a binary tree in consistency with the Tamari order on Dyck words and binary trees.
The bijection is defined recursively as follows:
  • a leaf is associated with an empty Dyck path,
  • a tree with children l,r is associated with the Dyck word T(l)1T(r)0 where T(l) and T(r) are the images of this bijection to l and r.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.