Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤ
Values
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
>>> Load all 164 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
logarithmic height to pruning number
Description
Francon's map from Dyck paths to binary trees.
This bijection sends the logarithmic height of the Dyck path, St000920The logarithmic height of a Dyck path., to the pruning number of the binary tree, St000396The register function (or Horton-Strahler number) of a binary tree.. The implementation is a literal translation of Knuth's [2].
This bijection sends the logarithmic height of the Dyck path, St000920The logarithmic height of a Dyck path., to the pruning number of the binary tree, St000396The register function (or Horton-Strahler number) of a binary tree.. The implementation is a literal translation of Knuth's [2].
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!