Identifier
Values
[1,1,1] => [[1,1,1]] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,1,2] => [[1,1,2]] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,1,3] => [[1,1,3]] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,2,2] => [[1,2,2]] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,2,3] => [[1,2,3]] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,1,1,1] => [[1,1,1,1]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,2] => [[1,1,1,2]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,3] => [[1,1,1,3]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,4] => [[1,1,1,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,2,2] => [[1,1,2,2]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,2,3] => [[1,1,2,3]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,2,4] => [[1,1,2,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,3,3] => [[1,1,3,3]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,3,4] => [[1,1,3,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,2,2] => [[1,2,2,2]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,2,3] => [[1,2,2,3]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,2,4] => [[1,2,2,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,3,3] => [[1,2,3,3]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,3,4] => [[1,2,3,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,1,1] => [[1,1,1,1,1]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,2] => [[1,1,1,1,2]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,3] => [[1,1,1,1,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,4] => [[1,1,1,1,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,5] => [[1,1,1,1,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,2,2] => [[1,1,1,2,2]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,2,3] => [[1,1,1,2,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,2,4] => [[1,1,1,2,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,2,5] => [[1,1,1,2,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,3,3] => [[1,1,1,3,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,3,4] => [[1,1,1,3,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,3,5] => [[1,1,1,3,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,4,4] => [[1,1,1,4,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,4,5] => [[1,1,1,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,2,2] => [[1,1,2,2,2]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,2,3] => [[1,1,2,2,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,2,4] => [[1,1,2,2,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,2,5] => [[1,1,2,2,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,3,3] => [[1,1,2,3,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,3,4] => [[1,1,2,3,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,3,5] => [[1,1,2,3,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,4,4] => [[1,1,2,4,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,2,4,5] => [[1,1,2,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,3,3,3] => [[1,1,3,3,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,3,3,4] => [[1,1,3,3,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,3,3,5] => [[1,1,3,3,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,3,4,4] => [[1,1,3,4,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,3,4,5] => [[1,1,3,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,2,2] => [[1,2,2,2,2]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,2,3] => [[1,2,2,2,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,2,4] => [[1,2,2,2,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,2,5] => [[1,2,2,2,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,3,3] => [[1,2,2,3,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,3,4] => [[1,2,2,3,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,3,5] => [[1,2,2,3,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,4,4] => [[1,2,2,4,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,2,4,5] => [[1,2,2,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,3,3] => [[1,2,3,3,3]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,3,4] => [[1,2,3,3,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,3,5] => [[1,2,3,3,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,4,4] => [[1,2,3,4,4]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,4,5] => [[1,2,3,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,1,1] => [[1,1,1,1,1,1]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,1,2] => [[1,1,1,1,1,2]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,1,3] => [[1,1,1,1,1,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,1,4] => [[1,1,1,1,1,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,2,2] => [[1,1,1,1,2,2]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,2,3] => [[1,1,1,1,2,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,2,4] => [[1,1,1,1,2,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,3,3] => [[1,1,1,1,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,3,4] => [[1,1,1,1,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,4,4] => [[1,1,1,1,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,2,2] => [[1,1,1,2,2,2]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,2,3] => [[1,1,1,2,2,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,2,4] => [[1,1,1,2,2,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,3,3] => [[1,1,1,2,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,3,4] => [[1,1,1,2,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,2,4,4] => [[1,1,1,2,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,3,3,3] => [[1,1,1,3,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,3,3,4] => [[1,1,1,3,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,3,4,4] => [[1,1,1,3,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,4,4,4] => [[1,1,1,4,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,2,2] => [[1,1,2,2,2,2]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,2,3] => [[1,1,2,2,2,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,2,4] => [[1,1,2,2,2,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,3,3] => [[1,1,2,2,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,3,4] => [[1,1,2,2,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,2,4,4] => [[1,1,2,2,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,3,3,3] => [[1,1,2,3,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,3,3,4] => [[1,1,2,3,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,3,4,4] => [[1,1,2,3,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,2,4,4,4] => [[1,1,2,4,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,3,3,3,3] => [[1,1,3,3,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,3,3,3,4] => [[1,1,3,3,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,3,3,4,4] => [[1,1,3,3,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,3,4,4,4] => [[1,1,3,4,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,2,2] => [[1,2,2,2,2,2]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,2,3] => [[1,2,2,2,2,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,2,4] => [[1,2,2,2,2,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,3,3] => [[1,2,2,2,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,3,4] => [[1,2,2,2,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,2,4,4] => [[1,2,2,2,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
>>> Load all 110 entries. <<<
[1,2,2,3,3,3] => [[1,2,2,3,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,3,3,4] => [[1,2,2,3,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,3,4,4] => [[1,2,2,3,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,2,4,4,4] => [[1,2,2,4,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,3,3,3] => [[1,2,3,3,3,3]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,3,3,4] => [[1,2,3,3,3,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,3,4,4] => [[1,2,3,3,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,4,4,4] => [[1,2,3,4,4,4]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,4,5,6] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottommost row (in English notation).
Map
insertion tableau
Description
The insertion tableau obtained by applying RSK to the parking function regarded as a word.