Identifier
Values
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,1,0,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,1,0,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,0,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,0,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,0,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,1,1,0,0,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,0,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,1,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
>>> Load all 148 entries. <<<
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,1,1,0,0,0,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,0,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.