Identifier
-
Mp00079:
Set partitions
—shape⟶
Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤ
Values
{{1,2,3}} => [3] => [[3],[]] => ([(0,2),(2,1)],3) => 3
{{1},{2},{3}} => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => 3
{{1,2,3,4}} => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => 4
{{1,2},{3,4}} => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
{{1,3},{2,4}} => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
{{1,4},{2,3}} => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
{{1},{2},{3},{4}} => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 4
{{1,2,3,4,5}} => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
{{1},{2},{3},{4},{5}} => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
{{1,2,3,4,5,6}} => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
{{1,2,3},{4,5,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2,4},{3,5,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2,5},{3,4,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2,6},{3,4,5}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2},{3,4},{5,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2},{3,5},{4,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,2},{3,6},{4,5}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3,4},{2,5,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3,5},{2,4,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3,6},{2,4,5}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3},{2,4},{5,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3},{2,5},{4,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,3},{2,6},{4,5}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,4,5},{2,3,6}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,4,6},{2,3,5}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,4},{2,3},{5,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,5,6},{2,3,4}} => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,5},{2,3},{4,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,6},{2,3},{4,5}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,4},{2,5},{3,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,4},{2,6},{3,5}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,5},{2,4},{3,6}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,6},{2,4},{3,5}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,5},{2,6},{3,4}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1,6},{2,5},{3,4}} => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
{{1},{2},{3},{4},{5},{6}} => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
{{1,2,3,4,5,6,7}} => [7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
{{1},{2},{3},{4},{5},{6},{7}} => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
shape
Description
Sends a set partition to the integer partition obtained by the sizes of the blocks.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!