Identifier
Values
[1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [[1,1,2],[2,3],[3]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,1],[2,2,3],[3,4],[4]] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,2],[2,2,3],[3,3],[4]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,2],[2,2,3],[3,4],[4]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,0,1,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,0,1,0,1,1,0,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,0,1,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]] => ([(0,2),(2,1)],3) => 3
[1,1,0,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
Map
subcrystal
Description
The underlying poset of the subcrystal obtained by applying the raising operators to a semistandard tableau.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.