Identifier
Values
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 6
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 7
[1,1,0,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 7
[1,1,0,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 7
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,0,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,0,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,0,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 7
[1,1,1,0,0,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 7
[1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,0,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,1,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
>>> Load all 146 entries. <<<
[1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,0,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.