Identifier
Values
['A',1] => ([],1) => ([],1) => ([],1) => 1
['A',2] => ([(0,2),(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 1
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of factors of a lattice as a Cartesian product of lattices.
Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain $A$ in a poset is maximal if there is no antichain of larger cardinality which contains all elements of $A$.
The set of maximal antichains can be ordered by setting $A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B$, where $\mathop{\downarrow}A$ is the order ideal generated by $A$.
An antichain $A$ in a poset is maximal if there is no antichain of larger cardinality which contains all elements of $A$.
The set of maximal antichains can be ordered by setting $A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B$, where $\mathop{\downarrow}A$ is the order ideal generated by $A$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!