Identifier
- St001885: Binary words ⟶ ℤ
Values
0 => 2
1 => 2
00 => 1
01 => 2
10 => 2
11 => 1
000 => 1
001 => 4
010 => 1
011 => 4
100 => 4
101 => 1
110 => 4
111 => 1
0000 => 1
0001 => 6
0010 => 3
0011 => 6
0100 => 3
0101 => 1
0110 => 3
0111 => 6
1000 => 6
1001 => 3
1010 => 1
1011 => 3
1100 => 6
1101 => 3
1110 => 6
1111 => 1
00000 => 1
00001 => 12
00010 => 5
00011 => 12
00100 => 1
00101 => 12
00110 => 5
00111 => 12
01000 => 5
01001 => 2
01010 => 1
01011 => 12
01100 => 5
01101 => 2
01110 => 5
01111 => 12
10000 => 12
10001 => 5
10010 => 2
10011 => 5
10100 => 12
10101 => 1
10110 => 2
10111 => 5
11000 => 12
11001 => 5
11010 => 12
11011 => 1
11100 => 12
11101 => 5
11110 => 12
11111 => 1
000000 => 1
000001 => 20
000010 => 11
000011 => 20
000100 => 3
000101 => 20
000110 => 11
000111 => 20
001000 => 3
001001 => 1
001010 => 11
001011 => 20
001100 => 3
001101 => 20
001110 => 11
001111 => 20
010000 => 11
010001 => 3
010010 => 1
010011 => 20
010100 => 11
010101 => 1
010110 => 11
010111 => 20
011000 => 11
011001 => 3
011010 => 11
011011 => 1
011100 => 11
011101 => 3
011110 => 11
011111 => 20
100000 => 20
100001 => 11
100010 => 3
100011 => 11
100100 => 1
100101 => 11
100110 => 3
>>> Load all 1022 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of binary words with the same proper border set.
The proper border set of a binary word $w$ is the set of proper prefixes which are also suffixes of $w$.
For example, $0010000010$, $0010100010$ and $0010110010$ are the words with proper border set $\{0, 0010\}$, whereas $0010010010$ has proper border set $\{0, 0010, 0010010\}$.
The proper border set of a binary word $w$ is the set of proper prefixes which are also suffixes of $w$.
For example, $0010000010$, $0010100010$ and $0010110010$ are the words with proper border set $\{0, 0010\}$, whereas $0010010010$ has proper border set $\{0, 0010, 0010010\}$.
Code
@cached_function
def proper_border_set(w):
B = []
for i in range(1, len(w)):
if w[:i] == w[-i:]:
B.append(w[:i])
return B
def statistic(w):
B = proper_border_set(w)
return sum(1 for u in Words([0,1], len(w)) if B == proper_border_set(u))
Created
Dec 21, 2022 at 11:43 by Martin Rubey
Updated
Dec 21, 2022 at 11:43 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!