edit this statistic or download as text // json
Identifier
Values
=>
Cc0014;cc-rep
([],2)=>1 ([(0,1)],2)=>1 ([],3)=>1 ([(1,2)],3)=>1 ([(0,1),(0,2)],3)=>1 ([(0,2),(2,1)],3)=>1 ([(0,2),(1,2)],3)=>1 ([],4)=>1 ([(2,3)],4)=>1 ([(1,2),(1,3)],4)=>1 ([(0,1),(0,2),(0,3)],4)=>1 ([(0,2),(0,3),(3,1)],4)=>1 ([(0,1),(0,2),(1,3),(2,3)],4)=>1 ([(1,2),(2,3)],4)=>1 ([(0,3),(3,1),(3,2)],4)=>1 ([(1,3),(2,3)],4)=>1 ([(0,3),(1,3),(3,2)],4)=>1 ([(0,3),(1,3),(2,3)],4)=>1 ([(0,3),(1,2)],4)=>1 ([(0,3),(1,2),(1,3)],4)=>1 ([(0,2),(0,3),(1,2),(1,3)],4)=>1 ([(0,3),(2,1),(3,2)],4)=>1 ([(0,3),(1,2),(2,3)],4)=>1 ([],5)=>1 ([(3,4)],5)=>1 ([(2,3),(2,4)],5)=>1 ([(1,2),(1,3),(1,4)],5)=>1 ([(0,1),(0,2),(0,3),(0,4)],5)=>1 ([(0,2),(0,3),(0,4),(4,1)],5)=>1 ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)=>1 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>2 ([(1,3),(1,4),(4,2)],5)=>1 ([(0,3),(0,4),(4,1),(4,2)],5)=>1 ([(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>1 ([(0,3),(0,4),(3,2),(4,1)],5)=>1 ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1 ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)=>1 ([(2,3),(3,4)],5)=>1 ([(1,4),(4,2),(4,3)],5)=>1 ([(0,4),(4,1),(4,2),(4,3)],5)=>1 ([(2,4),(3,4)],5)=>1 ([(1,4),(2,4),(4,3)],5)=>1 ([(0,4),(1,4),(4,2),(4,3)],5)=>1 ([(1,4),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,4),(4,3)],5)=>1 ([(0,4),(1,4),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,3)],5)=>1 ([(0,4),(1,3),(2,3),(2,4)],5)=>1 ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>1 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>1 ([(0,4),(1,4),(2,3),(4,2)],5)=>1 ([(0,4),(1,3),(2,3),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(2,4)],5)=>1 ([(0,4),(1,4),(2,3),(3,4)],5)=>1 ([(1,4),(2,3)],5)=>1 ([(1,4),(2,3),(2,4)],5)=>1 ([(0,4),(1,2),(1,4),(2,3)],5)=>1 ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(1,3),(1,4),(2,3),(2,4)],5)=>1 ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)=>1 ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)=>1 ([(0,4),(1,2),(1,4),(4,3)],5)=>1 ([(0,4),(1,2),(1,3)],5)=>1 ([(0,4),(1,2),(1,3),(1,4)],5)=>1 ([(0,2),(0,4),(3,1),(4,3)],5)=>1 ([(0,4),(1,2),(1,3),(3,4)],5)=>1 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>1 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)=>1 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)=>1 ([(0,3),(1,2),(1,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)=>1 ([(1,4),(3,2),(4,3)],5)=>1 ([(0,3),(3,4),(4,1),(4,2)],5)=>1 ([(1,4),(2,3),(3,4)],5)=>1 ([(0,4),(1,2),(2,4),(4,3)],5)=>1 ([(0,3),(1,4),(4,2)],5)=>1 ([(0,4),(3,2),(4,1),(4,3)],5)=>1 ([(0,4),(1,2),(2,3),(2,4)],5)=>1 ([(0,4),(2,3),(3,1),(4,2)],5)=>1 ([(0,3),(1,2),(2,4),(3,4)],5)=>1 ([(0,4),(1,2),(2,3),(3,4)],5)=>1 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The maximum magnitude of the Möbius function of a poset.
The Möbius function of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Code
def statistic(P):
    return  max(abs(P.moebius_function(x,y)) for x in P for y in P)

Created
Mar 13, 2023 at 22:17 by Harry Richman
Updated
Mar 13, 2023 at 22:17 by Harry Richman