Identifier
Values
[1] => 1
[2] => 1
[1,1] => 1
[3] => 1
[2,1] => 2
[1,1,1] => 1
[4] => 2
[3,1] => 3
[2,2] => 2
[2,1,1] => 2
[1,1,1,1] => 1
[5] => 5
[4,1] => 6
[3,2] => 4
[3,1,1] => 4
[2,2,1] => 4
[2,1,1,1] => 2
[1,1,1,1,1] => 1
[6] => 12
[5,1] => 15
[4,2] => 9
[4,1,1] => 9
[3,3] => 4
[3,2,1] => 12
[3,1,1,1] => 4
[2,2,2] => 3
[2,2,1,1] => 5
[2,1,1,1,1] => 2
[1,1,1,1,1,1] => 1
[7] => 33
[6,1] => 38
[5,2] => 23
[5,1,1] => 23
[4,3] => 18
[4,2,1] => 28
[4,1,1,1] => 10
[3,3,1] => 12
[3,2,2] => 10
[3,2,1,1] => 18
[3,1,1,1,1] => 4
[2,2,2,1] => 7
[2,2,1,1,1] => 5
[2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1] => 1
[8] => 94
[7,1] => 109
[6,2] => 64
[6,1,1] => 62
[5,3] => 49
[5,2,1] => 76
[5,1,1,1] => 27
[4,4] => 24
[4,3,1] => 60
[4,2,2] => 24
[4,2,1,1] => 46
[4,1,1,1,1] => 10
[3,3,2] => 19
[3,3,1,1] => 21
[3,2,2,1] => 33
[3,2,1,1,1] => 20
[3,1,1,1,1,1] => 4
[2,2,2,2] => 5
[2,2,2,1,1] => 9
[2,2,1,1,1,1] => 5
[2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => 1
[9] => 290
[8,1] => 326
[7,2] => 187
[7,1,1] => 187
[6,3] => 141
[6,2,1] => 218
[6,1,1,1] => 75
[5,4] => 128
[5,3,1] => 169
[5,2,2] => 69
[5,2,1,1] => 128
[5,1,1,1,1] => 28
[4,4,1] => 80
[4,3,2] => 104
[4,3,1,1] => 104
[4,2,2,1] => 84
[4,2,1,1,1] => 54
[4,1,1,1,1,1] => 10
[3,3,3] => 16
[3,3,2,1] => 68
[3,3,1,1,1] => 25
[3,2,2,2] => 21
[3,2,2,1,1] => 54
[3,2,1,1,1,1] => 20
[3,1,1,1,1,1,1] => 4
[2,2,2,2,1] => 12
[2,2,2,1,1,1] => 10
[2,2,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => 1
[10] => 949
[9,1] => 1054
[8,2] => 592
[8,1,1] => 592
[7,3] => 441
>>> Load all 811 entries. <<<[7,2,1] => 678
[7,1,1,1] => 237
[6,4] => 388
[6,3,1] => 513
[6,2,2] => 207
[6,2,1,1] => 388
[6,1,1,1,1] => 80
[5,5] => 189
[5,4,1] => 466
[5,3,2] => 308
[5,3,1,1] => 308
[5,2,2,1] => 248
[5,2,1,1,1] => 158
[5,1,1,1,1,1] => 28
[4,4,2] => 145
[4,4,1,1] => 145
[4,3,3] => 124
[4,3,2,1] => 380
[4,3,1,1,1] => 132
[4,2,2,2] => 56
[4,2,2,1,1] => 148
[4,2,1,1,1,1] => 56
[4,1,1,1,1,1,1] => 10
[3,3,3,1] => 56
[3,3,2,2] => 65
[3,3,2,1,1] => 124
[3,3,1,1,1,1] => 26
[3,2,2,2,1] => 75
[3,2,2,1,1,1] => 64
[3,2,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1] => 4
[2,2,2,2,2] => 7
[2,2,2,2,1,1] => 17
[2,2,2,1,1,1,1] => 10
[2,2,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1] => 1
[11] => 3245
[10,1] => 3569
[9,2] => 1982
[9,1,1] => 1982
[8,3] => 1454
[8,2,1] => 2228
[8,1,1,1] => 774
[7,4] => 1258
[7,3,1] => 1663
[7,2,2] => 662
[7,2,1,1] => 1258
[7,1,1,1,1] => 257
[6,5] => 1184
[6,4,1] => 1464
[6,3,2] => 969
[6,3,1,1] => 967
[6,2,2,1] => 772
[6,2,1,1,1] => 495
[6,1,1,1,1,1] => 81
[5,5,1] => 711
[5,4,2] => 879
[5,4,1,1] => 879
[5,3,3] => 380
[5,3,2,1] => 1162
[5,3,1,1,1] => 402
[5,2,2,2] => 169
[5,2,2,1,1] => 451
[5,2,1,1,1,1] => 168
[5,1,1,1,1,1,1] => 28
[4,4,3] => 356
[4,4,2,1] => 546
[4,4,1,1,1] => 190
[4,3,3,1] => 470
[4,3,2,2] => 372
[4,3,2,1,1] => 710
[4,3,1,1,1,1] => 142
[4,2,2,2,1] => 207
[4,2,2,1,1,1] => 185
[4,2,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1] => 10
[3,3,3,2] => 104
[3,3,3,1,1] => 106
[3,3,2,2,1] => 245
[3,3,2,1,1,1] => 159
[3,3,1,1,1,1,1] => 26
[3,2,2,2,2] => 41
[3,2,2,2,1,1] => 132
[3,2,2,1,1,1,1] => 66
[3,2,1,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1,1] => 4
[2,2,2,2,2,1] => 19
[2,2,2,2,1,1,1] => 19
[2,2,2,1,1,1,1,1] => 10
[2,2,1,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1] => 1
[12] => 11666
[11,1] => 12741
[10,2] => 7013
[10,1,1] => 7001
[9,3] => 5094
[9,2,1] => 7784
[9,1,1,1] => 2690
[8,4] => 4332
[8,3,1] => 5726
[8,2,2] => 2254
[8,2,1,1] => 4332
[8,1,1,1,1] => 860
[7,5] => 3997
[7,4,1] => 4950
[7,3,2] => 3274
[7,3,1,1] => 3274
[7,2,2,1] => 2584
[7,2,1,1,1] => 1676
[7,1,1,1,1,1] => 263
[6,6] => 1950
[6,5,1] => 4654
[6,4,2] => 2882
[6,4,1,1] => 2882
[6,3,3] => 1246
[6,3,2,1] => 3816
[6,3,1,1,1] => 1311
[6,2,2,2] => 544
[6,2,2,1,1] => 1470
[6,2,1,1,1,1] => 541
[6,1,1,1,1,1,1] => 81
[5,5,2] => 1391
[5,5,1,1] => 1403
[5,4,3] => 2264
[5,4,2,1] => 3460
[5,4,1,1,1] => 1196
[5,3,3,1] => 1500
[5,3,2,2] => 1181
[5,3,2,1,1] => 2264
[5,3,1,1,1,1] => 445
[5,2,2,2,1] => 650
[5,2,2,1,1,1] => 587
[5,2,1,1,1,1,1] => 170
[5,1,1,1,1,1,1,1] => 28
[4,4,4] => 356
[4,4,3,1] => 1406
[4,4,2,2] => 559
[4,4,2,1,1] => 1060
[4,4,1,1,1,1] => 213
[4,3,3,2] => 929
[4,3,3,1,1] => 929
[4,3,2,2,1] => 1460
[4,3,2,1,1,1] => 948
[4,3,1,1,1,1,1] => 144
[4,2,2,2,2] => 114
[4,2,2,2,1,1] => 389
[4,2,2,1,1,1,1] => 197
[4,2,1,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1,1] => 10
[3,3,3,3] => 69
[3,3,3,2,1] => 410
[3,3,3,1,1,1] => 146
[3,3,2,2,2] => 170
[3,3,2,2,1,1] => 477
[3,3,2,1,1,1,1] => 171
[3,3,1,1,1,1,1,1] => 26
[3,2,2,2,2,1] => 154
[3,2,2,2,1,1,1] => 165
[3,2,2,1,1,1,1,1] => 66
[3,2,1,1,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1,1,1] => 4
[2,2,2,2,2,2] => 11
[2,2,2,2,2,1,1] => 28
[2,2,2,2,1,1,1,1] => 20
[2,2,2,1,1,1,1,1,1] => 10
[2,2,1,1,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[13] => 43731
[12,1] => 47362
[11,2] => 25841
[11,1,1] => 25841
[10,3] => 18633
[10,2,1] => 28430
[10,1,1,1] => 9785
[9,4] => 15644
[9,3,1] => 20702
[9,2,2] => 8112
[9,2,1,1] => 15644
[9,1,1,1,1] => 3054
[8,5] => 14186
[8,4,1] => 17596
[8,3,2] => 11640
[8,3,1,1] => 11640
[8,2,2,1] => 9118
[8,2,1,1,1] => 5956
[8,1,1,1,1,1] => 888
[7,6] => 13512
[7,5,1] => 16219
[7,4,2] => 10057
[7,4,1,1] => 10057
[7,3,3] => 4368
[7,3,2,1] => 13308
[7,3,1,1,1] => 4572
[7,2,2,2] => 1854
[7,2,2,1,1] => 5122
[7,2,1,1,1,1] => 1871
[7,1,1,1,1,1,1] => 264
[6,6,1] => 7882
[6,5,2] => 9452
[6,5,1,1] => 9442
[6,4,3] => 7682
[6,4,2,1] => 11720
[6,4,1,1,1] => 4030
[6,3,3,1] => 5086
[6,3,2,2] => 3986
[6,3,2,1,1] => 7682
[6,3,1,1,1,1] => 1481
[6,2,2,2,1] => 2164
[6,2,2,1,1,1] => 1980
[6,2,1,1,1,1,1] => 553
[6,1,1,1,1,1,1,1] => 81
[5,5,3] => 3717
[5,5,2,1] => 5664
[5,5,1,1,1] => 1959
[5,4,4] => 3490
[5,4,3,1] => 9220
[5,4,2,2] => 3608
[5,4,2,1,1] => 6970
[5,4,1,1,1,1] => 1358
[5,3,3,2] => 3049
[5,3,3,1,1] => 3059
[5,3,2,2,1] => 4779
[5,3,2,1,1,1] => 3112
[5,3,1,1,1,1,1] => 457
[5,2,2,2,2] => 367
[5,2,2,2,1,1] => 1259
[5,2,2,1,1,1,1] => 643
[5,2,1,1,1,1,1,1] => 170
[5,1,1,1,1,1,1,1,1] => 28
[4,4,4,1] => 1448
[4,4,3,2] => 2864
[4,4,3,1,1] => 2864
[4,4,2,2,1] => 2245
[4,4,2,1,1,1] => 1464
[4,4,1,1,1,1,1] => 219
[4,3,3,3] => 832
[4,3,3,2,1] => 3784
[4,3,3,1,1,1] => 1302
[4,3,2,2,2] => 1048
[4,3,2,2,1,1] => 2910
[4,3,2,1,1,1,1] => 1054
[4,3,1,1,1,1,1,1] => 144
[4,2,2,2,2,1] => 450
[4,2,2,2,1,1,1] => 511
[4,2,2,1,1,1,1,1] => 199
[4,2,1,1,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1,1,1] => 10
[3,3,3,3,1] => 279
[3,3,3,2,2] => 428
[3,3,3,2,1,1] => 832
[3,3,3,1,1,1,1] => 164
[3,3,2,2,2,1] => 690
[3,3,2,2,1,1,1] => 643
[3,3,2,1,1,1,1,1] => 173
[3,3,1,1,1,1,1,1,1] => 26
[3,2,2,2,2,2] => 74
[3,2,2,2,2,1,1] => 287
[3,2,2,2,1,1,1,1] => 176
[3,2,2,1,1,1,1,1,1] => 66
[3,2,1,1,1,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1,1,1,1] => 4
[2,2,2,2,2,2,1] => 30
[2,2,2,2,2,1,1,1] => 33
[2,2,2,2,1,1,1,1,1] => 20
[2,2,2,1,1,1,1,1,1,1] => 10
[2,2,1,1,1,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[14] => 170748
[13,1] => 183883
[12,2] => 99590
[12,1,1] => 99590
[11,3] => 71357
[11,2,1] => 108658
[11,1,1,1] => 37301
[10,4] => 59286
[10,3,1] => 78491
[10,2,2] => 30598
[10,2,1,1] => 59286
[10,1,1,1,1] => 11381
[9,5] => 53058
[9,4,1] => 65868
[9,3,2] => 43604
[9,3,1,1] => 43604
[9,2,2,1] => 33988
[9,2,1,1,1] => 22264
[9,1,1,1,1,1] => 3194
[8,6] => 49720
[8,5,1] => 59674
[8,4,2] => 37044
[8,4,1,1] => 37044
[8,3,3] => 16120
[8,3,2,1] => 49040
[8,3,1,1,1] => 16800
[8,2,2,2] => 6725
[8,2,2,1,1] => 18815
[8,2,1,1,1,1] => 6819
[8,1,1,1,1,1,1] => 895
[7,7] => 24388
[7,6,1] => 56838
[7,5,2] => 34109
[7,5,1,1] => 34109
[7,4,3] => 27810
[7,4,2,1] => 42344
[7,4,1,1,1] => 14534
[7,3,3,1] => 18428
[7,3,2,2] => 14346
[7,3,2,1,1] => 27810
[7,3,1,1,1,1] => 5300
[7,2,2,2,1] => 7695
[7,2,2,1,1,1] => 7165
[7,2,1,1,1,1,1] => 1936
[7,1,1,1,1,1,1,1] => 264
[6,6,2] => 16582
[6,6,1,1] => 16558
[6,5,3] => 26105
[6,5,2,1] => 39762
[6,5,1,1,1] => 13627
[6,4,4] => 12254
[6,4,3,1] => 32410
[6,4,2,2] => 12625
[6,4,2,1,1] => 24484
[6,4,1,1,1,1] => 4685
[6,3,3,2] => 10727
[6,3,3,1,1] => 10743
[6,3,2,2,1] => 16730
[6,3,2,1,1,1] => 10925
[6,3,1,1,1,1,1] => 1542
[6,2,2,2,2] => 1247
[6,2,2,2,1,1] => 4374
[6,2,2,1,1,1,1] => 2228
[6,2,1,1,1,1,1,1] => 555
[6,1,1,1,1,1,1,1,1] => 81
[5,5,4] => 11832
[5,5,3,1] => 15665
[5,5,2,2] => 6099
[5,5,2,1,1] => 11832
[5,5,1,1,1,1] => 2278
[5,4,4,1] => 14708
[5,4,3,2] => 19448
[5,4,3,1,1] => 19448
[5,4,2,2,1] => 15144
[5,4,2,1,1,1] => 9938
[5,4,1,1,1,1,1] => 1418
[5,3,3,3] => 2832
[5,3,3,2,1] => 12872
[5,3,3,1,1,1] => 4421
[5,3,2,2,2] => 3529
[5,3,2,2,1,1] => 9878
[5,3,2,1,1,1,1] => 3552
[5,3,1,1,1,1,1,1] => 459
[5,2,2,2,2,1] => 1493
[5,2,2,2,1,1,1] => 1720
[5,2,2,1,1,1,1,1] => 658
[5,2,1,1,1,1,1,1,1] => 170
[5,1,1,1,1,1,1,1,1,1] => 28
[4,4,4,2] => 3051
[4,4,4,1,1] => 3051
[4,4,3,3] => 3974
[4,4,3,2,1] => 12088
[4,4,3,1,1,1] => 4140
[4,4,2,2,2] => 1657
[4,4,2,2,1,1] => 4637
[4,4,2,1,1,1,1] => 1680
[4,4,1,1,1,1,1,1] => 220
[4,3,3,3,1] => 3516
[4,3,3,2,2] => 4083
[4,3,3,2,1,1] => 7940
[4,3,3,1,1,1,1] => 1507
[4,3,2,2,2,1] => 4370
[4,3,2,2,1,1,1] => 4080
[4,3,2,1,1,1,1,1] => 1084
[4,3,1,1,1,1,1,1,1] => 144
[4,2,2,2,2,2] => 218
[4,2,2,2,2,1,1] => 890
[4,2,2,2,1,1,1,1] => 563
[4,2,2,1,1,1,1,1,1] => 199
[4,2,1,1,1,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1,1,1,1] => 10
[3,3,3,3,2] => 583
[3,3,3,3,1,1] => 591
[3,3,3,2,2,1] => 1802
[3,3,3,2,1,1,1] => 1191
[3,3,3,1,1,1,1,1] => 169
[3,3,2,2,2,2] => 396
[3,3,2,2,2,1,1] => 1414
[3,3,2,2,1,1,1,1] => 718
[3,3,2,1,1,1,1,1,1] => 173
[3,3,1,1,1,1,1,1,1,1] => 26
[3,2,2,2,2,2,1] => 292
[3,2,2,2,2,1,1,1] => 377
[3,2,2,2,1,1,1,1,1] => 178
[3,2,2,1,1,1,1,1,1,1] => 66
[3,2,1,1,1,1,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1,1,1,1,1] => 4
[2,2,2,2,2,2,2] => 15
[2,2,2,2,2,2,1,1] => 47
[2,2,2,2,2,1,1,1,1] => 35
[2,2,2,2,1,1,1,1,1,1] => 20
[2,2,2,1,1,1,1,1,1,1,1] => 10
[2,2,1,1,1,1,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[15] => 689957
[14,1] => 739252
[13,2] => 398059
[13,1,1] => 398059
[12,3] => 283584
[12,2,1] => 431204
[12,1,1,1] => 147620
[11,4] => 233594
[11,3,1] => 309375
[11,2,2] => 120042
[11,2,1,1] => 233594
[11,1,1,1,1] => 44261
[10,5] => 206798
[10,4,1] => 256950
[10,3,2] => 170160
[10,3,1,1] => 170148
[10,2,2,1] => 132056
[10,2,1,1,1] => 86790
[10,1,1,1,1,1] => 12036
[9,6] => 191453
[9,5,1] => 229762
[9,4,2] => 142742
[9,4,1,1] => 142742
[9,3,3] => 62217
[9,3,2,1] => 189052
[9,3,1,1,1] => 64618
[9,2,2,2] => 25633
[9,2,2,1,1] => 72362
[9,2,1,1,1,1] => 26052
[9,1,1,1,1,1,1] => 3231
[8,7] => 184750
[8,6,1] => 215340
[8,5,2] => 129216
[8,5,1,1] => 129216
[8,4,3] => 105596
[8,4,2,1] => 160560
[8,4,1,1,1] => 54964
[8,3,3,1] => 69980
[8,3,2,2] => 54246
[8,3,2,1,1] => 105596
[8,3,1,1,1,1] => 19882
[8,2,2,2,1] => 28824
[8,2,2,1,1,1] => 27142
[8,2,1,1,1,1,1] => 7136
[8,1,1,1,1,1,1,1] => 896
[7,7,1] => 105592
[7,6,2] => 123108
[7,6,1,1] => 123042
[7,5,3] => 97137
[7,5,2,1] => 147704
[7,5,1,1,1] => 50567
[7,4,4] => 45608
[7,4,3,1] => 120700
[7,4,2,2] => 46800
[7,4,2,1,1] => 91150
[7,4,1,1,1,1] => 17250
[7,3,3,2] => 39963
[7,3,3,1,1] => 40029
[7,3,2,2,1] => 62013
[7,3,2,1,1,1] => 40708
[7,3,1,1,1,1,1] => 5584
[7,2,2,2,2] => 4499
[7,2,2,2,1,1] => 16133
[7,2,2,1,1,1,1] => 8253
[7,2,1,1,1,1,1,1] => 1950
[7,1,1,1,1,1,1,1,1] => 264
[6,6,3] => 47187
[6,6,2,1] => 71788
[6,6,1,1,1] => 24525
[6,5,4] => 85488
[6,5,3,1] => 113227
[6,5,2,2] => 43951
[6,5,2,1,1] => 85488
[6,5,1,1,1,1] => 16166
[6,4,4,1] => 53160
[6,4,3,2] => 70363
[6,4,3,1,1] => 70331
[6,4,2,2,1] => 54572
[6,4,2,1,1,1] => 35881
[6,4,1,1,1,1,1] => 4949
[6,3,3,3] => 10244
[6,3,3,2,1] => 46590
[6,3,3,1,1,1] => 15932
[6,3,2,2,2] => 12633
[6,3,2,2,1,1] => 35663
[6,3,2,1,1,1,1] => 12745
[6,3,1,1,1,1,1,1] => 1556
[6,2,2,2,2,1] => 5251
[6,2,2,2,1,1,1] => 6175
[6,2,2,1,1,1,1,1] => 2308
[6,2,1,1,1,1,1,1,1] => 555
[6,1,1,1,1,1,1,1,1,1] => 81
[5,5,5] => 13773
[5,5,4,1] => 51298
[5,5,3,2] => 33964
[5,5,3,1,1] => 33976
[5,5,2,2,1] => 26348
[5,5,2,1,1,1] => 17334
[5,5,1,1,1,1,1] => 2408
[5,4,4,2] => 31899
[5,4,4,1,1] => 31899
[5,4,3,3] => 27784
[5,4,3,2,1] => 84420
[5,4,3,1,1,1] => 28852
[5,4,2,2,2] => 11424
[5,4,2,2,1,1] => 32304
[5,4,2,1,1,1,1] => 11636
[5,4,1,1,1,1,1,1] => 1432
[5,3,3,3,1] => 12300
[5,3,3,2,2] => 14249
[5,3,3,2,1,1] => 27784
[5,3,3,1,1,1,1] => 5224
[5,3,2,2,2,1] => 15146
[5,3,2,2,1,1,1] => 14247
[5,3,2,1,1,1,1,1] => 3703
[5,3,1,1,1,1,1,1,1] => 459
[5,2,2,2,2,2] => 731
[5,2,2,2,2,1,1] => 3050
[5,2,2,2,1,1,1,1] => 1945
[5,2,2,1,1,1,1,1,1] => 660
[5,2,1,1,1,1,1,1,1,1] => 170
[5,1,1,1,1,1,1,1,1,1,1] => 28
[4,4,4,3] => 8702
[4,4,4,2,1] => 13236
[4,4,4,1,1,1] => 4534
[4,4,3,3,1] => 17278
[4,4,3,2,2] => 13383
[4,4,3,2,1,1] => 26076
[4,4,3,1,1,1,1] => 4903
[4,4,2,2,2,1] => 7104
[4,4,2,2,1,1,1] => 6705
[4,4,2,1,1,1,1,1] => 1757
[4,4,1,1,1,1,1,1,1] => 220
[4,3,3,3,2] => 7626
[4,3,3,3,1,1] => 7658
[4,3,3,2,2,1] => 17700
[4,3,3,2,1,1,1] => 11649
[4,3,3,1,1,1,1,1] => 1581
[4,3,2,2,2,2] => 2553
[4,3,2,2,2,1,1] => 9204
[4,3,2,2,1,1,1,1] => 4689
[4,3,2,1,1,1,1,1,1] => 1088
[4,3,1,1,1,1,1,1,1,1] => 144
[4,2,2,2,2,2,1] => 899
[4,2,2,2,2,1,1,1] => 1226
[4,2,2,2,1,1,1,1,1] => 576
[4,2,2,1,1,1,1,1,1,1] => 199
[4,2,1,1,1,1,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1,1,1,1,1] => 10
[3,3,3,3,3] => 340
[3,3,3,3,2,1] => 2534
[3,3,3,3,1,1,1] => 879
[3,3,3,2,2,2] => 1361
[3,3,3,2,2,1,1] => 3868
[3,3,3,2,1,1,1,1] => 1387
[3,3,3,1,1,1,1,1,1] => 170
[3,3,2,2,2,2,1] => 1685
[3,3,2,2,2,1,1,1] => 2005
[3,3,2,2,1,1,1,1,1] => 737
[3,3,2,1,1,1,1,1,1,1] => 173
[3,3,1,1,1,1,1,1,1,1,1] => 26
[3,2,2,2,2,2,2] => 127
[3,2,2,2,2,2,1,1] => 572
[3,2,2,2,2,1,1,1,1] => 415
[3,2,2,2,1,1,1,1,1,1] => 178
[3,2,2,1,1,1,1,1,1,1,1] => 66
[3,2,1,1,1,1,1,1,1,1,1,1] => 20
[3,1,1,1,1,1,1,1,1,1,1,1,1] => 4
[2,2,2,2,2,2,2,1] => 45
[2,2,2,2,2,2,1,1,1] => 57
[2,2,2,2,2,1,1,1,1,1] => 36
[2,2,2,2,1,1,1,1,1,1,1] => 20
[2,2,2,1,1,1,1,1,1,1,1,1] => 10
[2,2,1,1,1,1,1,1,1,1,1,1,1] => 5
[2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1
[16] => 2887816
[15,1] => 3080437
[14,2] => 1650300
[14,1,1] => 1650180
[13,3] => 1170211
[13,2,1] => 1777182
[13,1,1,1] => 606971
[12,4] => 956804
[12,3,1] => 1267692
[12,2,2] => 490008
[12,2,1,1] => 956804
[12,1,1,1,1] => 179120
[11,5] => 839473
[11,4,1] => 1043782
[11,3,2] => 691488
[11,3,1,1] => 691488
[11,2,2,1] => 534632
[11,2,1,1,1] => 352294
[11,1,1,1,1,1] => 47453
[10,6] => 769500
[10,5,1] => 923412
[10,4,2] => 574069
[10,4,1,1] => 574081
[10,3,3] => 250568
[10,3,2,1] => 760648
[10,3,1,1,1] => 259420
[10,2,2,2] => 102183
[10,2,2,1,1] => 290517
[10,2,1,1,1,1] => 103986
[10,1,1,1,1,1,1] => 12244
[9,7] => 733362
[9,6,1] => 854937
[9,5,2] => 512986
[9,5,1,1] => 512986
[9,4,3] => 420012
[9,4,2,1] => 637836
[9,4,1,1,1] => 217824
[9,3,3,1] => 278433
[9,3,2,2] => 215100
[9,3,2,1,1] => 420012
[9,3,1,1,1,1] => 78246
[9,2,2,2,1] => 113493
[9,2,2,1,1,1] => 107710
[9,2,1,1,1,1,1] => 27648
[9,1,1,1,1,1,1,1] => 3239
[8,8] => 360962
[8,7,1] => 824910
[8,6,2] => 480908
[8,6,1,1] => 480752
[8,5,3] => 379954
[8,5,2,1] => 577024
[8,5,1,1,1] => 197070
[8,4,4] => 178378
[8,4,3,1] => 472452
[8,4,2,2] => 182552
[8,4,2,1,1] => 356616
[8,4,1,1,1,1] => 66716
[8,3,3,2] => 156516
[8,3,3,1,1] => 156672
[8,3,2,2,1] => 241934
[8,3,2,1,1,1] => 159264
[8,3,1,1,1,1,1] => 21244
[8,2,2,2,2] => 17188
[8,2,2,2,1,1] => 62660
[8,2,2,1,1,1,1] => 32046
[8,2,1,1,1,1,1,1] => 7224
[8,1,1,1,1,1,1,1,1] => 896
[7,7,2] => 235662
[7,7,1,1] => 235782
[7,6,3] => 361905
[7,6,2,1] => 549706
[7,6,1,1,1] => 187583
[7,5,4] => 327776
[7,5,3,1] => 434293
[7,5,2,2] => 167885
[7,5,2,1,1] => 327776
[7,5,1,1,1,1] => 61368
[7,4,4,1] => 203916
[7,4,3,2] => 270004
[7,4,3,1,1] => 270004
[7,4,2,2,1] => 208648
[7,4,2,1,1,1] => 137610
[7,4,1,1,1,1,1] => 18482
[7,3,3,3] => 39372
[7,3,3,2,1] => 178880
[7,3,3,1,1,1] => 61081
[7,3,2,2,2] => 48012
[7,3,2,2,1,1] => 136639
[7,3,2,1,1,1,1] => 48665
[7,3,1,1,1,1,1,1] => 5667
[7,2,2,2,2,1] => 19671
[7,2,2,2,1,1,1] => 23603
[7,2,2,1,1,1,1,1] => 8666
[7,2,1,1,1,1,1,1,1] => 1952
[7,1,1,1,1,1,1,1,1,1] => 264
[6,6,4] => 159196
[6,6,3,1] => 210993
[6,6,2,2] => 81682
[6,6,2,1,1] => 159196
[6,6,1,1,1,1] => 29757
[6,5,5] => 153632
[6,5,4,1] => 382116
[6,5,3,2] => 253203
[6,5,3,1,1] => 253105
[6,5,2,2,1] => 195788
[6,5,2,1,1,1] => 128913
[6,5,1,1,1,1,1] => 17327
[6,4,4,2] => 118900
[6,4,4,1,1] => 118822
[6,4,3,3] => 103716
[6,4,3,2,1] => 314832
[6,4,3,1,1,1] => 107298
[6,4,2,2,2] => 42223
[6,4,2,2,1,1] => 120232
[6,4,2,1,1,1,1] => 42991
[6,4,1,1,1,1,1,1] => 5030
[6,3,3,3,1] => 45890
[6,3,3,2,2] => 53041
[6,3,3,2,1,1] => 103716
[6,3,3,1,1,1,1] => 19259
[6,3,2,2,2,1] => 56007
[6,3,2,2,1,1,1] => 53063
[6,3,2,1,1,1,1,1] => 13479
[6,3,1,1,1,1,1,1,1] => 1558
[6,2,2,2,2,2] => 2612
[6,2,2,2,2,1,1] => 11158
[6,2,2,2,1,1,1,1] => 7171
[6,2,2,1,1,1,1,1,1] => 2325
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
2,1 1,3,1 1,1,0,3,1,1 1,1,1,2,1,0,0,0,2,0,0,2,0,0,1 1,1,0,1,1,0,1,0,0,2,0,1,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1
$F_{1} = q$
$F_{2} = 2\ q$
$F_{3} = 2\ q + q^{2}$
$F_{4} = q + 3\ q^{2} + q^{3}$
$F_{5} = q + q^{2} + 3\ q^{4} + q^{5} + q^{6}$
$F_{6} = q + q^{2} + q^{3} + 2\ q^{4} + q^{5} + 2\ q^{9} + 2\ q^{12} + q^{15}$
$F_{7} = q + q^{2} + q^{4} + q^{5} + q^{7} + 2\ q^{10} + q^{12} + 2\ q^{18} + 2\ q^{23} + q^{28} + q^{33} + q^{38}$
$F_{8} = q + q^{2} + q^{4} + 2\ q^{5} + q^{9} + q^{10} + q^{19} + q^{20} + q^{21} + 2\ q^{24} + q^{27} + q^{33} + q^{46} + q^{49} + q^{60} + q^{62} + q^{64} + q^{76} + q^{94} + q^{109}$
$F_{9} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + q^{12} + q^{16} + q^{20} + q^{21} + q^{25} + q^{28} + 2\ q^{54} + q^{68} + q^{69} + q^{75} + q^{80} + q^{84} + 2\ q^{104} + 2\ q^{128} + q^{141} + q^{169} + 2\ q^{187} + q^{218} + q^{290} + q^{326}$
$F_{10} = q + q^{2} + q^{4} + q^{5} + q^{7} + 2\ q^{10} + q^{17} + q^{20} + q^{26} + q^{28} + 3\ q^{56} + q^{64} + q^{65} + q^{75} + q^{80} + 2\ q^{124} + q^{132} + 2\ q^{145} + q^{148} + q^{158} + q^{189} + q^{207} + q^{237} + q^{248} + 2\ q^{308} + q^{380} + 2\ q^{388} + q^{441} + q^{466} + q^{513} + 2\ q^{592} + q^{678} + q^{949} + q^{1054}$
$F_{11} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + 2\ q^{19} + q^{20} + q^{26} + q^{28} + q^{41} + q^{56} + q^{66} + q^{81} + q^{104} + q^{106} + q^{132} + q^{142} + q^{159} + q^{168} + q^{169} + q^{185} + q^{190} + q^{207} + q^{245} + q^{257} + q^{356} + q^{372} + q^{380} + q^{402} + q^{451} + q^{470} + q^{495} + q^{546} + q^{662} + q^{710} + q^{711} + q^{772} + q^{774} + 2\ q^{879} + q^{967} + q^{969} + q^{1162} + q^{1184} + 2\ q^{1258} + q^{1454} + q^{1464} + q^{1663} + 2\ q^{1982} + q^{2228} + q^{3245} + q^{3569}$
$F_{12} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + q^{11} + 2\ q^{20} + q^{26} + 2\ q^{28} + q^{56} + q^{66} + q^{69} + q^{81} + q^{114} + q^{144} + q^{146} + q^{154} + q^{165} + 2\ q^{170} + q^{171} + q^{197} + q^{213} + q^{263} + q^{356} + q^{389} + q^{410} + q^{445} + q^{477} + q^{541} + q^{544} + q^{559} + q^{587} + q^{650} + q^{860} + 2\ q^{929} + q^{948} + q^{1060} + q^{1181} + q^{1196} + q^{1246} + q^{1311} + q^{1391} + q^{1403} + q^{1406} + q^{1460} + q^{1470} + q^{1500} + q^{1676} + q^{1950} + q^{2254} + 2\ q^{2264} + q^{2584} + q^{2690} + 2\ q^{2882} + 2\ q^{3274} + q^{3460} + q^{3816} + q^{3997} + 2\ q^{4332} + q^{4654} + q^{4950} + q^{5094} + q^{5726} + q^{7001} + q^{7013} + q^{7784} + q^{11666} + q^{12741}$
$F_{13} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + 2\ q^{20} + q^{26} + q^{28} + q^{30} + q^{33} + q^{56} + q^{66} + q^{74} + q^{81} + q^{144} + q^{164} + q^{170} + q^{173} + q^{176} + q^{199} + q^{219} + q^{264} + q^{279} + q^{287} + q^{367} + q^{428} + q^{450} + q^{457} + q^{511} + q^{553} + 2\ q^{643} + q^{690} + 2\ q^{832} + q^{888} + q^{1048} + q^{1054} + q^{1259} + q^{1302} + q^{1358} + q^{1448} + q^{1464} + q^{1481} + q^{1854} + q^{1871} + q^{1959} + q^{1980} + q^{2164} + q^{2245} + 2\ q^{2864} + q^{2910} + q^{3049} + q^{3054} + q^{3059} + q^{3112} + q^{3490} + q^{3608} + q^{3717} + q^{3784} + q^{3986} + q^{4030} + q^{4368} + q^{4572} + q^{4779} + q^{5086} + q^{5122} + q^{5664} + q^{5956} + q^{6970} + 2\ q^{7682} + q^{7882} + q^{8112} + q^{9118} + q^{9220} + q^{9442} + q^{9452} + q^{9785} + 2\ q^{10057} + 2\ q^{11640} + q^{11720} + q^{13308} + q^{13512} + q^{14186} + 2\ q^{15644} + q^{16219} + q^{17596} + q^{18633} + q^{20702} + 2\ q^{25841} + q^{28430} + q^{43731} + q^{47362}$
$F_{14} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + q^{15} + 2\ q^{20} + q^{26} + q^{28} + q^{35} + q^{47} + q^{56} + q^{66} + q^{81} + q^{144} + q^{169} + q^{170} + q^{173} + q^{178} + q^{199} + q^{218} + q^{220} + q^{264} + q^{292} + q^{377} + q^{396} + q^{459} + q^{555} + q^{563} + q^{583} + q^{591} + q^{658} + q^{718} + q^{890} + q^{895} + q^{1084} + q^{1191} + q^{1247} + q^{1414} + q^{1418} + q^{1493} + q^{1507} + q^{1542} + q^{1657} + q^{1680} + q^{1720} + q^{1802} + q^{1936} + q^{2228} + q^{2278} + q^{2832} + 2\ q^{3051} + q^{3194} + q^{3516} + q^{3529} + q^{3552} + q^{3974} + q^{4080} + q^{4083} + q^{4140} + q^{4370} + q^{4374} + q^{4421} + q^{4637} + q^{4685} + q^{5300} + q^{6099} + q^{6725} + q^{6819} + q^{7165} + q^{7695} + q^{7940} + q^{9878} + q^{9938} + q^{10727} + q^{10743} + q^{10925} + q^{11381} + 2\ q^{11832} + q^{12088} + q^{12254} + q^{12625} + q^{12872} + q^{13627} + q^{14346} + q^{14534} + q^{14708} + q^{15144} + q^{15665} + q^{16120} + q^{16558} + q^{16582} + q^{16730} + q^{16800} + q^{18428} + q^{18815} + 2\ q^{19448} + q^{22264} + q^{24388} + q^{24484} + q^{26105} + 2\ q^{27810} + q^{30598} + q^{32410} + q^{33988} + 2\ q^{34109} + 2\ q^{37044} + q^{37301} + q^{39762} + q^{42344} + 2\ q^{43604} + q^{49040} + q^{49720} + q^{53058} + q^{56838} + 2\ q^{59286} + q^{59674} + q^{65868} + q^{71357} + q^{78491} + 2\ q^{99590} + q^{108658} + q^{170748} + q^{183883}$
$F_{15} = q + q^{2} + q^{4} + q^{5} + 2\ q^{10} + 2\ q^{20} + q^{26} + q^{28} + q^{36} + q^{45} + q^{56} + q^{57} + q^{66} + q^{81} + q^{127} + q^{144} + 2\ q^{170} + q^{173} + q^{178} + q^{199} + q^{220} + q^{264} + q^{340} + q^{415} + q^{459} + q^{555} + q^{572} + q^{576} + q^{660} + q^{731} + q^{737} + q^{879} + q^{896} + q^{899} + q^{1088} + q^{1226} + q^{1361} + q^{1387} + q^{1432} + q^{1556} + q^{1581} + q^{1685} + q^{1757} + q^{1945} + q^{1950} + q^{2005} + q^{2308} + q^{2408} + q^{2534} + q^{2553} + q^{3050} + q^{3231} + q^{3703} + q^{3868} + q^{4499} + q^{4534} + q^{4689} + q^{4903} + q^{4949} + q^{5224} + q^{5251} + q^{5584} + q^{6175} + q^{6705} + q^{7104} + q^{7136} + q^{7626} + q^{7658} + q^{8253} + q^{8702} + q^{9204} + q^{10244} + q^{11424} + q^{11636} + q^{11649} + q^{12036} + q^{12300} + q^{12633} + q^{12745} + q^{13236} + q^{13383} + q^{13773} + q^{14247} + q^{14249} + q^{15146} + q^{15932} + q^{16133} + q^{16166} + q^{17250} + q^{17278} + q^{17334} + q^{17700} + q^{19882} + q^{24525} + q^{25633} + q^{26052} + q^{26076} + q^{26348} + q^{27142} + 2\ q^{27784} + q^{28824} + q^{28852} + 2\ q^{31899} + q^{32304} + q^{33964} + q^{33976} + q^{35663} + q^{35881} + q^{39963} + q^{40029} + q^{40708} + q^{43951} + q^{44261} + q^{45608} + q^{46590} + q^{46800} + q^{47187} + q^{50567} + q^{51298} + q^{53160} + q^{54246} + q^{54572} + q^{54964} + q^{62013} + q^{62217} + q^{64618} + q^{69980} + q^{70331} + q^{70363} + q^{71788} + q^{72362} + q^{84420} + 2\ q^{85488} + q^{86790} + q^{91150} + q^{97137} + q^{105592} + 2\ q^{105596} + q^{113227} + q^{120042} + q^{120700} + q^{123042} + q^{123108} + 2\ q^{129216} + q^{132056} + 2\ q^{142742} + q^{147620} + q^{147704} + q^{160560} + q^{170148} + q^{170160} + q^{184750} + q^{189052} + q^{191453} + q^{206798} + q^{215340} + q^{229762} + 2\ q^{233594} + q^{256950} + q^{283584} + q^{309375} + 2\ q^{398059} + q^{431204} + q^{689957} + q^{739252}$
Description
The total number of irreducible representations contained in the higher Lie character for an integer partition.
References
[1] Schocker, M. Multiplicities of higher Lie characters MathSciNet:1984625
Code
def statistic(la):
s = SymmetricFunctions(ZZ).s()
return sum(c for _, c in s.higher_lie_character(la))
Created
May 25, 2023 at 14:31 by Martin Rubey
Updated
May 25, 2023 at 14:31 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!