Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St001906: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,2] => [1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [3,1,2] => [3,1,2] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,2,3] => [1,3,2] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [3,4,1,2] => [3,4,1,2] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [3,1,2,4] => [3,1,4,2] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,4,2,3] => [1,4,3,2] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [4,1,2,3] => [4,1,3,2] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => [1,4,3,2] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => [3,5,4,1,2] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => [3,5,1,4,2] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [3,1,5,2,4] => [3,1,5,4,2] => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => [3,5,1,4,2] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => [3,1,5,4,2] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,4,5,2,3] => [1,5,4,3,2] => 0
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,4,2,3,5] => [1,5,4,3,2] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,1,5,2,3] => [4,1,5,3,2] => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => [4,5,1,3,2] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => [4,1,5,3,2] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,2,5,3,4] => [1,5,4,3,2] => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => [1,5,4,3,2] => 0
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => [5,1,4,3,2] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => [1,5,4,3,2] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,1,2] => [3,6,5,4,1,2] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [3,4,5,1,2,6] => [3,6,5,1,4,2] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [3,4,1,6,2,5] => [3,6,1,5,4,2] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [3,4,6,1,2,5] => [3,6,5,1,4,2] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,1,2,5,6] => [3,6,1,5,4,2] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [3,1,5,6,2,4] => [3,1,6,5,4,2] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4,6] => [3,1,6,5,4,2] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [3,5,1,6,2,4] => [3,6,1,5,4,2] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [3,5,6,1,2,4] => [3,6,5,1,4,2] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4,6] => [3,6,1,5,4,2] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [3,1,2,6,4,5] => [3,1,6,5,4,2] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [3,1,6,2,4,5] => [3,1,6,5,4,2] => 0
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,6,1,2,4,5] => [3,6,1,5,4,2] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [3,1,2,4,5,6] => [3,1,6,5,4,2] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,4,5,6,2,3] => [1,6,5,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,4,5,2,3,6] => [1,6,5,4,3,2] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,4,2,6,3,5] => [1,6,5,4,3,2] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,4,6,2,3,5] => [1,6,5,4,3,2] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,4,2,3,5,6] => [1,6,5,4,3,2] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [4,1,5,6,2,3] => [4,1,6,5,3,2] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [4,1,5,2,3,6] => [4,1,6,5,3,2] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [4,5,1,6,2,3] => [4,6,1,5,3,2] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,5,6,1,2,3] => [4,6,5,1,3,2] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [4,5,1,2,3,6] => [4,6,1,5,3,2] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [4,1,2,6,3,5] => [4,1,6,5,3,2] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [4,1,6,2,3,5] => [4,1,6,5,3,2] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [4,6,1,2,3,5] => [4,6,1,5,3,2] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [4,1,2,3,5,6] => [4,1,6,5,3,2] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,2,5,6,3,4] => [1,6,5,4,3,2] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,2,5,3,4,6] => [1,6,5,4,3,2] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,5,2,6,3,4] => [1,6,5,4,3,2] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,5,6,2,3,4] => [1,6,5,4,3,2] => 0
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,5,2,3,4,6] => [1,6,5,4,3,2] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,1,2,6,3,4] => [5,1,6,4,3,2] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [5,1,6,2,3,4] => [5,1,6,4,3,2] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [5,6,1,2,3,4] => [5,6,1,4,3,2] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [5,1,2,3,4,6] => [5,1,6,4,3,2] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,2,3,6,4,5] => [1,6,5,4,3,2] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,2,6,3,4,5] => [1,6,5,4,3,2] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,6,2,3,4,5] => [1,6,5,4,3,2] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,1,2,3,4,5] => [6,1,5,4,3,2] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => [1,6,5,4,3,2] => 0
[] => [1,0] => [1] => [1] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation.
Let $\pi$ be a permutation. Its total displacement St000830The total displacement of a permutation. is $D(\pi) = \sum_i |\pi(i) - i|$, and its absolute length St000216The absolute length of a permutation. is the minimal number $T(\pi)$ of transpositions whose product is $\pi$. Finally, let $I(\pi)$ be the number of inversions St000018The number of inversions of a permutation. of $\pi$.
This statistic equals $\left(D(\pi)-T(\pi)-I(\pi)\right)/2$.
Diaconis and Graham [1] proved that this statistic is always nonnegative.
Let $\pi$ be a permutation. Its total displacement St000830The total displacement of a permutation. is $D(\pi) = \sum_i |\pi(i) - i|$, and its absolute length St000216The absolute length of a permutation. is the minimal number $T(\pi)$ of transpositions whose product is $\pi$. Finally, let $I(\pi)$ be the number of inversions St000018The number of inversions of a permutation. of $\pi$.
This statistic equals $\left(D(\pi)-T(\pi)-I(\pi)\right)/2$.
Diaconis and Graham [1] proved that this statistic is always nonnegative.
Map
Simion-Schmidt map
Description
The Simion-Schmidt map sends any permutation to a $123$-avoiding permutation.
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!