Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001908: Integer partitions ⟶ ℤ
Values
['A',1] => ([],1) => [2] => [1,1] => 1
['A',2] => ([(0,2),(1,2)],3) => [3,2] => [2,2,1] => 3
['B',2] => ([(0,3),(1,3),(3,2)],4) => [4,2] => [2,2,1,1] => 6
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => [2,2,1,1,1,1] => 15
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition.
For example, there are eight tableaux of shape $[3,2,1]$ with maximal entry $3$, but two of them have the same weight.
For example, there are eight tableaux of shape $[3,2,1]$ with maximal entry $3$, but two of them have the same weight.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!