edit this statistic or download as text // json
Identifier
Values
([],1) => 2
([],2) => 4
([(0,1)],2) => 4
([],3) => 8
([(1,2)],3) => 8
([(0,1),(0,2)],3) => 8
([(0,2),(2,1)],3) => 7
([(0,2),(1,2)],3) => 8
([],4) => 16
([(2,3)],4) => 16
([(1,2),(1,3)],4) => 16
([(0,1),(0,2),(0,3)],4) => 16
([(0,2),(0,3),(3,1)],4) => 14
([(0,1),(0,2),(1,3),(2,3)],4) => 13
([(1,2),(2,3)],4) => 14
([(0,3),(3,1),(3,2)],4) => 13
([(1,3),(2,3)],4) => 16
([(0,3),(1,3),(3,2)],4) => 13
([(0,3),(1,3),(2,3)],4) => 16
([(0,3),(1,2)],4) => 16
([(0,3),(1,2),(1,3)],4) => 16
([(0,2),(0,3),(1,2),(1,3)],4) => 16
([(0,3),(2,1),(3,2)],4) => 11
([(0,3),(1,2),(2,3)],4) => 14
([],5) => 32
([(3,4)],5) => 32
([(2,3),(2,4)],5) => 32
([(1,2),(1,3),(1,4)],5) => 32
([(0,1),(0,2),(0,3),(0,4)],5) => 32
([(0,2),(0,3),(0,4),(4,1)],5) => 28
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 26
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 25
([(1,3),(1,4),(4,2)],5) => 28
([(0,3),(0,4),(4,1),(4,2)],5) => 26
([(1,2),(1,3),(2,4),(3,4)],5) => 26
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 19
([(0,3),(0,4),(3,2),(4,1)],5) => 25
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => 24
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 23
([(2,3),(3,4)],5) => 28
([(1,4),(4,2),(4,3)],5) => 26
([(0,4),(4,1),(4,2),(4,3)],5) => 25
([(2,4),(3,4)],5) => 32
([(1,4),(2,4),(4,3)],5) => 26
([(0,4),(1,4),(4,2),(4,3)],5) => 23
([(1,4),(2,4),(3,4)],5) => 32
([(0,4),(1,4),(2,4),(4,3)],5) => 25
([(0,4),(1,4),(2,4),(3,4)],5) => 32
([(0,4),(1,4),(2,3)],5) => 32
([(0,4),(1,3),(2,3),(2,4)],5) => 32
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 32
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 32
([(0,4),(1,4),(2,3),(4,2)],5) => 19
([(0,4),(1,3),(2,3),(3,4)],5) => 26
([(0,4),(1,4),(2,3),(2,4)],5) => 32
([(0,4),(1,4),(2,3),(3,4)],5) => 28
([(1,4),(2,3)],5) => 32
([(1,4),(2,3),(2,4)],5) => 32
([(0,4),(1,2),(1,4),(2,3)],5) => 28
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => 24
([(1,3),(1,4),(2,3),(2,4)],5) => 32
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 26
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 23
([(0,4),(1,2),(1,4),(4,3)],5) => 26
([(0,4),(1,2),(1,3)],5) => 32
([(0,4),(1,2),(1,3),(1,4)],5) => 32
([(0,2),(0,4),(3,1),(4,3)],5) => 22
([(0,4),(1,2),(1,3),(3,4)],5) => 28
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 21
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 26
([(0,3),(0,4),(1,2),(1,4)],5) => 32
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 32
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 32
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 28
([(0,3),(1,2),(1,4),(3,4)],5) => 28
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 26
([(1,4),(3,2),(4,3)],5) => 22
([(0,3),(3,4),(4,1),(4,2)],5) => 19
([(1,4),(2,3),(3,4)],5) => 28
([(0,4),(1,2),(2,4),(4,3)],5) => 21
([(0,3),(1,4),(4,2)],5) => 28
([(0,4),(3,2),(4,1),(4,3)],5) => 21
([(0,4),(1,2),(2,3),(2,4)],5) => 26
([(0,4),(2,3),(3,1),(4,2)],5) => 16
([(0,3),(1,2),(2,4),(3,4)],5) => 25
([(0,4),(1,2),(2,3),(3,4)],5) => 22
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 19
([],6) => 64
([(4,5)],6) => 64
([(3,4),(3,5)],6) => 64
([(2,3),(2,4),(2,5)],6) => 64
([(1,2),(1,3),(1,4),(1,5)],6) => 64
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 64
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 56
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 52
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => 50
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 49
([(1,3),(1,4),(1,5),(5,2)],6) => 56
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 52
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 52
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 50
>>> Load all 405 entries. <<<
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 35
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => 47
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => 45
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 44
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 43
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => 46
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 37
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => 38
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 50
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => 48
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) => 46
([(2,3),(2,4),(4,5)],6) => 56
([(1,4),(1,5),(5,2),(5,3)],6) => 52
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 50
([(2,3),(2,4),(3,5),(4,5)],6) => 52
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 38
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => 31
([(1,4),(1,5),(4,3),(5,2)],6) => 50
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 48
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 46
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => 35
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 31
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => 36
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 47
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => 46
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 45
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) => 44
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 43
([(3,4),(4,5)],6) => 56
([(2,3),(3,4),(3,5)],6) => 52
([(1,5),(5,2),(5,3),(5,4)],6) => 50
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => 49
([(2,3),(3,5),(5,4)],6) => 44
([(1,4),(4,5),(5,2),(5,3)],6) => 38
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => 35
([(3,5),(4,5)],6) => 64
([(2,5),(3,5),(5,4)],6) => 52
([(1,5),(2,5),(5,3),(5,4)],6) => 46
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => 43
([(2,5),(3,5),(4,5)],6) => 64
([(1,5),(2,5),(3,5),(5,4)],6) => 50
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => 43
([(1,5),(2,5),(3,5),(4,5)],6) => 64
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 49
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 64
([(0,5),(1,5),(2,5),(3,4)],6) => 64
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 35
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 50
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 56
([(1,5),(2,5),(3,4)],6) => 64
([(1,5),(2,4),(3,4),(3,5)],6) => 64
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => 52
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 45
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) => 52
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 44
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 50
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 43
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 50
([(1,5),(2,5),(3,4),(5,3)],6) => 38
([(1,5),(2,4),(3,4),(4,5)],6) => 52
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 37
([(0,5),(1,5),(2,3),(5,4)],6) => 52
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => 35
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => 46
([(1,5),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => 50
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => 56
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 46
([(0,5),(1,5),(2,3),(2,4)],6) => 64
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => 31
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => 52
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 46
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 44
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => 38
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 35
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => 56
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 42
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 37
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 52
([(1,5),(2,5),(3,4),(4,5)],6) => 56
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 41
([(0,5),(1,5),(2,3),(3,4)],6) => 56
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 26
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 47
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => 42
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 37
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => 52
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 44
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 38
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 35
([(0,5),(1,5),(2,4),(3,4)],6) => 64
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => 64
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 38
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 31
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 52
([(2,5),(3,4)],6) => 64
([(2,5),(3,4),(3,5)],6) => 64
([(1,5),(2,3),(2,5),(3,4)],6) => 56
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => 52
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => 44
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => 40
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 48
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => 33
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => 46
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => 42
([(2,4),(2,5),(3,4),(3,5)],6) => 64
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 52
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => 46
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 46
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => 43
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => 40
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => 37
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => 64
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => 38
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => 31
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => 35
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => 52
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 46
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 64
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => 52
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 56
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) => 56
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 52
([(1,5),(2,3),(2,5),(5,4)],6) => 52
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => 46
([(1,5),(2,3),(2,4)],6) => 64
([(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => 56
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 48
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 52
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 46
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => 52
([(0,5),(1,2),(1,3),(1,4)],6) => 64
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 64
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 44
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => 56
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => 42
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 52
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 41
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 50
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => 56
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) => 52
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 50
([(1,3),(1,5),(4,2),(5,4)],6) => 44
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => 38
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 40
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => 39
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 33
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => 39
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => 38
([(1,5),(2,3),(2,4),(4,5)],6) => 56
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => 42
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 42
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 29
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 52
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 37
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 50
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 48
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 46
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => 40
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => 40
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 48
([(0,4),(1,3),(1,5),(5,2)],6) => 56
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 42
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => 52
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 50
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 31
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => 52
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 47
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 26
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 38
([(1,4),(1,5),(2,3),(2,5)],6) => 64
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 52
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) => 46
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 52
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => 46
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 43
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) => 56
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => 48
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 44
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => 52
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 56
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => 46
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => 42
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => 38
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 56
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => 48
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => 52
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => 44
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) => 50
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => 45
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => 44
([(0,4),(0,5),(1,2),(1,3)],6) => 64
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 64
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 64
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => 56
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 52
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 64
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 64
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 64
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => 56
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => 56
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => 52
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => 56
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => 52
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => 35
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => 36
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) => 52
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 50
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 48
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 46
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => 49
([(1,4),(2,3),(2,5),(4,5)],6) => 56
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => 42
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 52
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => 40
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 35
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 49
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => 39
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => 46
([(0,5),(1,3),(1,4),(5,2)],6) => 56
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 32
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => 37
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => 52
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) => 50
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => 42
([(2,5),(3,4),(4,5)],6) => 56
([(1,5),(2,3),(3,5),(5,4)],6) => 42
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => 35
([(1,3),(2,4),(4,5)],6) => 56
([(1,5),(4,3),(5,2),(5,4)],6) => 42
([(1,5),(2,3),(3,4),(3,5)],6) => 52
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => 40
([(0,4),(1,5),(5,2),(5,3)],6) => 52
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 41
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => 50
([(1,5),(3,4),(4,2),(5,3)],6) => 32
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => 26
([(1,4),(2,3),(3,5),(4,5)],6) => 50
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 35
([(0,5),(1,4),(4,2),(5,3)],6) => 49
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => 31
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => 46
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => 43
([(1,5),(2,3),(3,4),(4,5)],6) => 44
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 38
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 26
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 31
([(0,5),(1,4),(2,3)],6) => 64
([(0,5),(1,3),(2,4),(2,5)],6) => 64
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => 64
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 44
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 39
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 56
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => 36
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 48
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => 38
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => 52
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => 64
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 64
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => 52
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 64
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 56
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 64
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 56
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 56
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 52
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 44
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => 38
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => 31
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => 33
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => 56
([(0,5),(1,3),(4,2),(5,4)],6) => 44
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => 35
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => 42
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) => 36
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => 29
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => 38
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 22
([(0,5),(1,3),(2,4),(4,5)],6) => 56
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => 52
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 29
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 42
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 32
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 26
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 40
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 29
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 50
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of interval-closed sets of a poset.
For a poset $P$ and a subset $I$ of $P$, we say that $I$ is an interval-closed set if for all $x, y \in I$ such that $x \leq y$, then $z \in I$ if $x \leq z \leq y$.
There is a bijection between interval-closed sets of a poset $P$ and pairs of disjoint antichains $(A, B)$ of $P$ such that any element in $B$ is in the order ideal $\Delta(A)$ generated by $A$. (Proposition 2.5 of [1]).
References
[1] Elder, J., Lafrenière, N., McNicholas, E., Striker, J., Welch, A. Toggling, rowmotion, and homomesy on interval-closed sets arXiv:2307.08520
Code
def statistic(x):
    ICS_count = 0
    for A in x.antichains_iterator():
        I = x.order_ideal(A)
        Q = x.subposet(set(I).difference(A))
        ICS_count += Q.antichains().cardinality()
    return ICS_count
Created
Jul 28, 2023 at 18:44 by Nadia Lafreniere
Updated
Jan 19, 2024 at 18:31 by Nadia Lafreniere