Identifier
- St001915: Binary words ⟶ ℤ
Values
0 => 1
1 => 1
00 => 1
01 => 2
10 => 2
11 => 3
000 => 3
001 => 5
010 => 5
011 => 7
100 => 5
101 => 7
110 => 7
111 => 11
0000 => 11
0001 => 15
0010 => 15
0011 => 15
0100 => 15
0101 => 7
0110 => 15
0111 => 30
1000 => 15
1001 => 15
1010 => 7
1011 => 30
1100 => 15
1101 => 30
1110 => 30
1111 => 42
00000 => 42
00001 => 56
00010 => 56
00011 => 45
00100 => 56
00101 => 32
00110 => 45
00111 => 67
01000 => 56
01001 => 32
01010 => 32
01011 => 34
01100 => 45
01101 => 34
01110 => 67
01111 => 135
10000 => 56
10001 => 45
10010 => 32
10011 => 67
10100 => 32
10101 => 34
10110 => 34
10111 => 135
11000 => 45
11001 => 67
11010 => 34
11011 => 135
11100 => 67
11101 => 135
11110 => 135
11111 => 176
000000 => 176
000001 => 231
000010 => 231
000011 => 185
000100 => 231
000101 => 87
000110 => 185
000111 => 214
001000 => 231
001001 => 25
001010 => 87
001011 => 80
001100 => 185
001101 => 65
001110 => 214
001111 => 322
010000 => 231
010001 => 87
010010 => 25
010011 => 65
010100 => 87
010101 => 26
010110 => 80
010111 => 133
011000 => 185
011001 => 80
011010 => 65
011011 => 35
011100 => 214
011101 => 133
011110 => 322
011111 => 627
100000 => 231
100001 => 185
100010 => 87
100011 => 214
100100 => 25
100101 => 80
100110 => 65
>>> Load all 511 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the component corresponding to a necklace in Bulgarian solitaire.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way.
References
[1] Brandt, Jør. Cycles of partitions MathSciNet:0656129
[2] Society, pages 483–486, 1982
[2] Society, pages 483–486, 1982
Code
def move(la):
return Partition(sorted([p-1 for p in la] + [len(la)], reverse=True))
def necklace_to_partition(w):
m = len(w)
la = [m - i + b for i, b in enumerate(w, 1)]
return Partition(la)
@cached_function
def components(n):
B = DiscreteDynamicalSystem(Partitions(n), move)
C = {frozenset(c): set(c) for c in B.cycles()}
E = set(B).difference(*C.values())
while E:
e = E.pop()
if not any(e in c for c in C.values()):
o, k = B.orbit(e, True)
c = frozenset(o[k:])
r = o[:k]
C[c].update(r)
E.difference_update(r)
return C
def component(la):
la = Partition(la)
n = la.size()
B = DiscreteDynamicalSystem(Partitions(n), move)
o, k = B.orbit(la, preperiod=True)
return components(n)[frozenset(o[k:])]
def statistic(w):
return len(component(necklace_to_partition(w)))
Created
Aug 16, 2023 at 08:53 by Martin Rubey
Updated
Aug 16, 2023 at 08:53 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!