Identifier
- St001915: Binary words ⟶ ℤ
Values
=>
0=>1
1=>1
00=>1
01=>2
10=>2
11=>3
000=>3
001=>5
010=>5
011=>7
100=>5
101=>7
110=>7
111=>11
0000=>11
0001=>15
0010=>15
0011=>15
0100=>15
0101=>7
0110=>15
0111=>30
1000=>15
1001=>15
1010=>7
1011=>30
1100=>15
1101=>30
1110=>30
1111=>42
00000=>42
00001=>56
00010=>56
00011=>45
00100=>56
00101=>32
00110=>45
00111=>67
01000=>56
01001=>32
01010=>32
01011=>34
01100=>45
01101=>34
01110=>67
01111=>135
10000=>56
10001=>45
10010=>32
10011=>67
10100=>32
10101=>34
10110=>34
10111=>135
11000=>45
11001=>67
11010=>34
11011=>135
11100=>67
11101=>135
11110=>135
11111=>176
000000=>176
000001=>231
000010=>231
000011=>185
000100=>231
000101=>87
000110=>185
000111=>214
001000=>231
001001=>25
001010=>87
001011=>80
001100=>185
001101=>65
001110=>214
001111=>322
010000=>231
010001=>87
010010=>25
010011=>65
010100=>87
010101=>26
010110=>80
010111=>133
011000=>185
011001=>80
011010=>65
011011=>35
011100=>214
011101=>133
011110=>322
011111=>627
100000=>231
100001=>185
100010=>87
100011=>214
100100=>25
100101=>80
100110=>65
100111=>322
101000=>87
101001=>65
101010=>26
101011=>133
101100=>80
101101=>35
101110=>133
101111=>627
110000=>185
110001=>214
110010=>80
110011=>322
110100=>65
110101=>133
110110=>35
110111=>627
111000=>214
111001=>322
111010=>133
111011=>627
111100=>322
111101=>627
111110=>627
111111=>792
0000000=>792
0000001=>1002
0000010=>1002
0000011=>811
0000100=>1002
0000101=>294
0000110=>811
0000111=>777
0001000=>1002
0001001=>150
0001010=>294
0001011=>336
0001100=>811
0001101=>189
0001110=>777
0001111=>1114
0010000=>1002
0010001=>150
0010010=>150
0010011=>125
0010100=>294
0010101=>148
0010110=>336
0010111=>286
0011000=>811
0011001=>125
0011010=>189
0011011=>145
0011100=>777
0011101=>255
0011110=>1114
0011111=>1637
0100000=>1002
0100001=>294
0100010=>150
0100011=>189
0100100=>150
0100101=>148
0100110=>125
0100111=>255
0101000=>294
0101001=>148
0101010=>148
0101011=>158
0101100=>336
0101101=>158
0101110=>286
0101111=>544
0110000=>811
0110001=>336
0110010=>125
0110011=>145
0110100=>189
0110101=>158
0110110=>145
0110111=>255
0111000=>777
0111001=>286
0111010=>255
0111011=>255
0111100=>1114
0111101=>544
0111110=>1637
0111111=>3010
1000000=>1002
1000001=>811
1000010=>294
1000011=>777
1000100=>150
1000101=>336
1000110=>189
1000111=>1114
1001000=>150
1001001=>125
1001010=>148
1001011=>286
1001100=>125
1001101=>145
1001110=>255
1001111=>1637
1010000=>294
1010001=>189
1010010=>148
1010011=>255
1010100=>148
1010101=>158
1010110=>158
1010111=>544
1011000=>336
1011001=>145
1011010=>158
1011011=>255
1011100=>286
1011101=>255
1011110=>544
1011111=>3010
1100000=>811
1100001=>777
1100010=>336
1100011=>1114
1100100=>125
1100101=>286
1100110=>145
1100111=>1637
1101000=>189
1101001=>255
1101010=>158
1101011=>544
1101100=>145
1101101=>255
1101110=>255
1101111=>3010
1110000=>777
1110001=>1114
1110010=>286
1110011=>1637
1110100=>255
1110101=>544
1110110=>255
1110111=>3010
1111000=>1114
1111001=>1637
1111010=>544
1111011=>3010
1111100=>1637
1111101=>3010
1111110=>3010
1111111=>3718
00000000=>3718
00000001=>4565
00000010=>4565
00000011=>3727
00000100=>4565
00000101=>1152
00000110=>3727
00000111=>3880
00001000=>4565
00001001=>500
00001010=>1152
00001011=>815
00001100=>3727
00001101=>747
00001110=>3880
00001111=>4420
00010000=>4565
00010001=>225
00010010=>500
00010011=>375
00010100=>1152
00010101=>420
00010110=>815
00010111=>1076
00011000=>3727
00011001=>360
00011010=>747
00011011=>414
00011100=>3880
00011101=>802
00011110=>4420
00011111=>5972
00100000=>4565
00100001=>500
00100010=>225
00100011=>360
00100100=>500
00100101=>245
00100110=>375
00100111=>470
00101000=>1152
00101001=>245
00101010=>420
00101011=>309
00101100=>815
00101101=>316
00101110=>1076
00101111=>1082
00110000=>3727
00110001=>375
00110010=>360
00110011=>150
00110100=>747
00110101=>295
00110110=>414
00110111=>525
00111000=>3880
00111001=>470
00111010=>802
00111011=>524
00111100=>4420
00111101=>1158
00111110=>5972
00111111=>8463
01000000=>4565
01000001=>1152
01000010=>500
01000011=>747
01000100=>225
01000101=>420
01000110=>360
01000111=>802
01001000=>500
01001001=>245
01001010=>245
01001011=>316
01001100=>375
01001101=>295
01001110=>470
01001111=>1158
01010000=>1152
01010001=>420
01010010=>245
01010011=>295
01010100=>420
01010101=>97
01010110=>309
01010111=>593
01011000=>815
01011001=>309
01011010=>316
01011011=>289
01011100=>1076
01011101=>593
01011110=>1082
01011111=>2414
01100000=>3727
01100001=>815
01100010=>375
01100011=>414
01100100=>360
01100101=>309
01100110=>150
01100111=>524
01101000=>747
01101001=>316
01101010=>295
01101011=>289
01101100=>414
01101101=>289
01101110=>525
01101111=>983
01110000=>3880
01110001=>1076
01110010=>470
01110011=>525
01110100=>802
01110101=>593
01110110=>524
01110111=>450
01111000=>4420
01111001=>1082
01111010=>1158
01111011=>983
01111100=>5972
01111101=>2414
01111110=>8463
01111111=>14883
10000000=>4565
10000001=>3727
10000010=>1152
10000011=>3880
10000100=>500
10000101=>815
10000110=>747
10000111=>4420
10001000=>225
10001001=>375
10001010=>420
10001011=>1076
10001100=>360
10001101=>414
10001110=>802
10001111=>5972
10010000=>500
10010001=>360
10010010=>245
10010011=>470
10010100=>245
10010101=>309
10010110=>316
10010111=>1082
10011000=>375
10011001=>150
10011010=>295
10011011=>525
10011100=>470
10011101=>524
10011110=>1158
10011111=>8463
10100000=>1152
10100001=>747
10100010=>420
10100011=>802
10100100=>245
10100101=>316
10100110=>295
10100111=>1158
10101000=>420
10101001=>295
10101010=>97
10101011=>593
10101100=>309
10101101=>289
10101110=>593
10101111=>2414
10110000=>815
10110001=>414
10110010=>309
10110011=>524
10110100=>316
10110101=>289
10110110=>289
10110111=>983
10111000=>1076
10111001=>525
10111010=>593
10111011=>450
10111100=>1082
10111101=>983
10111110=>2414
10111111=>14883
11000000=>3727
11000001=>3880
11000010=>815
11000011=>4420
11000100=>375
11000101=>1076
11000110=>414
11000111=>5972
11001000=>360
11001001=>470
11001010=>309
11001011=>1082
11001100=>150
11001101=>525
11001110=>524
11001111=>8463
11010000=>747
11010001=>802
11010010=>316
11010011=>1158
11010100=>295
11010101=>593
11010110=>289
11010111=>2414
11011000=>414
11011001=>524
11011010=>289
11011011=>983
11011100=>525
11011101=>450
11011110=>983
11011111=>14883
11100000=>3880
11100001=>4420
11100010=>1076
11100011=>5972
11100100=>470
11100101=>1082
11100110=>525
11100111=>8463
11101000=>802
11101001=>1158
11101010=>593
11101011=>2414
11101100=>524
11101101=>983
11101110=>450
11101111=>14883
11110000=>4420
11110001=>5972
11110010=>1082
11110011=>8463
11110100=>1158
11110101=>2414
11110110=>983
11110111=>14883
11111000=>5972
11111001=>8463
11111010=>2414
11111011=>14883
11111100=>8463
11111101=>14883
11111110=>14883
11111111=>17977
000000000=>17977
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the component corresponding to a necklace in Bulgarian solitaire.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way.
References
[1] Brandt, Jør. Cycles of partitions MathSciNet:0656129
[2] Society, pages 483–486, 1982
[2] Society, pages 483–486, 1982
Code
def move(la): return Partition(sorted([p-1 for p in la] + [len(la)], reverse=True)) def necklace_to_partition(w): m = len(w) la = [m - i + b for i, b in enumerate(w, 1)] return Partition(la) @cached_function def components(n): B = DiscreteDynamicalSystem(Partitions(n), move) C = {frozenset(c): set(c) for c in B.cycles()} E = set(B).difference(*C.values()) while E: e = E.pop() if not any(e in c for c in C.values()): o, k = B.orbit(e, True) c = frozenset(o[k:]) r = o[:k] C[c].update(r) E.difference_update(r) return C def component(la): la = Partition(la) n = la.size() B = DiscreteDynamicalSystem(Partitions(n), move) o, k = B.orbit(la, preperiod=True) return components(n)[frozenset(o[k:])] def statistic(w): return len(component(necklace_to_partition(w)))
Created
Aug 16, 2023 at 08:53 by Martin Rubey
Updated
Aug 16, 2023 at 08:53 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!