edit this statistic or download as text // json
Identifier
Values
=>
0=>0 1=>0 00=>0 01=>0 10=>0 11=>2 000=>2 001=>2 010=>2 011=>4 100=>2 101=>4 110=>4 111=>10 0000=>10 0001=>11 0010=>11 0011=>11 0100=>11 0101=>5 0110=>11 0111=>26 1000=>11 1001=>11 1010=>5 1011=>26 1100=>11 1101=>26 1110=>26 1111=>41 00000=>41 00001=>51 00010=>51 00011=>40 00100=>51 00101=>27 00110=>40 00111=>62 01000=>51 01001=>27 01010=>27 01011=>29 01100=>40 01101=>29 01110=>62 01111=>130 10000=>51 10001=>40 10010=>27 10011=>62 10100=>27 10101=>29 10110=>29 10111=>130 11000=>40 11001=>62 11010=>29 11011=>130 11100=>62 11101=>130 11110=>130 11111=>175 000000=>175 000001=>225 000010=>225 000011=>179 000100=>225 000101=>81 000110=>179 000111=>208 001000=>225 001001=>22 001010=>81 001011=>74 001100=>179 001101=>59 001110=>208 001111=>316 010000=>225 010001=>81 010010=>22 010011=>59 010100=>81 010101=>24 010110=>74 010111=>127 011000=>179 011001=>74 011010=>59 011011=>32 011100=>208 011101=>127 011110=>316 011111=>621 100000=>225 100001=>179 100010=>81 100011=>208 100100=>22 100101=>74 100110=>59 100111=>316 101000=>81 101001=>59 101010=>24 101011=>127 101100=>74 101101=>32 101110=>127 101111=>621 110000=>179 110001=>208 110010=>74 110011=>316 110100=>59 110101=>127 110110=>32 110111=>621 111000=>208 111001=>316 111010=>127 111011=>621 111100=>316 111101=>621 111110=>621 111111=>791 0000000=>791 0000001=>995 0000010=>995 0000011=>804 0000100=>995 0000101=>287 0000110=>804 0000111=>770 0001000=>995 0001001=>143 0001010=>287 0001011=>329 0001100=>804 0001101=>182 0001110=>770 0001111=>1107 0010000=>995 0010001=>143 0010010=>143 0010011=>118 0010100=>287 0010101=>141 0010110=>329 0010111=>279 0011000=>804 0011001=>118 0011010=>182 0011011=>138 0011100=>770 0011101=>248 0011110=>1107 0011111=>1630 0100000=>995 0100001=>287 0100010=>143 0100011=>182 0100100=>143 0100101=>141 0100110=>118 0100111=>248 0101000=>287 0101001=>141 0101010=>141 0101011=>151 0101100=>329 0101101=>151 0101110=>279 0101111=>537 0110000=>804 0110001=>329 0110010=>118 0110011=>138 0110100=>182 0110101=>151 0110110=>138 0110111=>248 0111000=>770 0111001=>279 0111010=>248 0111011=>248 0111100=>1107 0111101=>537 0111110=>1630 0111111=>3003 1000000=>995 1000001=>804 1000010=>287 1000011=>770 1000100=>143 1000101=>329 1000110=>182 1000111=>1107 1001000=>143 1001001=>118 1001010=>141 1001011=>279 1001100=>118 1001101=>138 1001110=>248 1001111=>1630 1010000=>287 1010001=>182 1010010=>141 1010011=>248 1010100=>141 1010101=>151 1010110=>151 1010111=>537 1011000=>329 1011001=>138 1011010=>151 1011011=>248 1011100=>279 1011101=>248 1011110=>537 1011111=>3003 1100000=>804 1100001=>770 1100010=>329 1100011=>1107 1100100=>118 1100101=>279 1100110=>138 1100111=>1630 1101000=>182 1101001=>248 1101010=>151 1101011=>537 1101100=>138 1101101=>248 1101110=>248 1101111=>3003 1110000=>770 1110001=>1107 1110010=>279 1110011=>1630 1110100=>248 1110101=>537 1110110=>248 1110111=>3003 1111000=>1107 1111001=>1630 1111010=>537 1111011=>3003 1111100=>1630 1111101=>3003 1111110=>3003 1111111=>3717 00000000=>3717 00000001=>4557 00000010=>4557 00000011=>3719 00000100=>4557 00000101=>1144 00000110=>3719 00000111=>3872 00001000=>4557 00001001=>492 00001010=>1144 00001011=>807 00001100=>3719 00001101=>739 00001110=>3872 00001111=>4412 00010000=>4557 00010001=>221 00010010=>492 00010011=>367 00010100=>1144 00010101=>412 00010110=>807 00010111=>1068 00011000=>3719 00011001=>352 00011010=>739 00011011=>406 00011100=>3872 00011101=>794 00011110=>4412 00011111=>5964 00100000=>4557 00100001=>492 00100010=>221 00100011=>352 00100100=>492 00100101=>237 00100110=>367 00100111=>462 00101000=>1144 00101001=>237 00101010=>412 00101011=>301 00101100=>807 00101101=>308 00101110=>1068 00101111=>1074 00110000=>3719 00110001=>367 00110010=>352 00110011=>146 00110100=>739 00110101=>287 00110110=>406 00110111=>517 00111000=>3872 00111001=>462 00111010=>794 00111011=>516 00111100=>4412 00111101=>1150 00111110=>5964 00111111=>8455 01000000=>4557 01000001=>1144 01000010=>492 01000011=>739 01000100=>221 01000101=>412 01000110=>352 01000111=>794 01001000=>492 01001001=>237 01001010=>237 01001011=>308 01001100=>367 01001101=>287 01001110=>462 01001111=>1150 01010000=>1144 01010001=>412 01010010=>237 01010011=>287 01010100=>412 01010101=>95 01010110=>301 01010111=>585 01011000=>807 01011001=>301 01011010=>308 01011011=>281 01011100=>1068 01011101=>585 01011110=>1074 01011111=>2406 01100000=>3719 01100001=>807 01100010=>367 01100011=>406 01100100=>352 01100101=>301 01100110=>146 01100111=>516 01101000=>739 01101001=>308 01101010=>287 01101011=>281 01101100=>406 01101101=>281 01101110=>517 01101111=>975 01110000=>3872 01110001=>1068 01110010=>462 01110011=>517 01110100=>794 01110101=>585 01110110=>516 01110111=>446 01111000=>4412 01111001=>1074 01111010=>1150 01111011=>975 01111100=>5964 01111101=>2406 01111110=>8455 01111111=>14875 10000000=>4557 10000001=>3719 10000010=>1144 10000011=>3872 10000100=>492 10000101=>807 10000110=>739 10000111=>4412 10001000=>221 10001001=>367 10001010=>412 10001011=>1068 10001100=>352 10001101=>406 10001110=>794 10001111=>5964 10010000=>492 10010001=>352 10010010=>237 10010011=>462 10010100=>237 10010101=>301 10010110=>308 10010111=>1074 10011000=>367 10011001=>146 10011010=>287 10011011=>517 10011100=>462 10011101=>516 10011110=>1150 10011111=>8455 10100000=>1144 10100001=>739 10100010=>412 10100011=>794 10100100=>237 10100101=>308 10100110=>287 10100111=>1150 10101000=>412 10101001=>287 10101010=>95 10101011=>585 10101100=>301 10101101=>281 10101110=>585 10101111=>2406 10110000=>807 10110001=>406 10110010=>301 10110011=>516 10110100=>308 10110101=>281 10110110=>281 10110111=>975 10111000=>1068 10111001=>517 10111010=>585 10111011=>446 10111100=>1074 10111101=>975 10111110=>2406 10111111=>14875 11000000=>3719 11000001=>3872 11000010=>807 11000011=>4412 11000100=>367 11000101=>1068 11000110=>406 11000111=>5964 11001000=>352 11001001=>462 11001010=>301 11001011=>1074 11001100=>146 11001101=>517 11001110=>516 11001111=>8455 11010000=>739 11010001=>794 11010010=>308 11010011=>1150 11010100=>287 11010101=>585 11010110=>281 11010111=>2406 11011000=>406 11011001=>516 11011010=>281 11011011=>975 11011100=>517 11011101=>446 11011110=>975 11011111=>14875 11100000=>3872 11100001=>4412 11100010=>1068 11100011=>5964 11100100=>462 11100101=>1074 11100110=>517 11100111=>8455 11101000=>794 11101001=>1150 11101010=>585 11101011=>2406 11101100=>516 11101101=>975 11101110=>446 11101111=>14875 11110000=>4412 11110001=>5964 11110010=>1074 11110011=>8455 11110100=>1150 11110101=>2406 11110110=>975 11110111=>14875 11111000=>5964 11111001=>8455 11111010=>2406 11111011=>14875 11111100=>8455 11111101=>14875 11111110=>14875 11111111=>17976 000000000=>17976
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of transient elements in the orbit of Bulgarian solitaire corresponding to a necklace.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way. The binary words corresponding to a necklace index the recurrent elements in a component, the remaining elements are called transient.
References
[1] Brandt, Jør. Cycles of partitions MathSciNet:0656129
[2] Society, pages 483–486, 1982
Code
def move(la):
    return Partition(sorted([p-1 for p in la] + [len(la)], reverse=True))

def necklace_to_partition(w):
    m = len(w)
    la = [m - i + b for i, b in enumerate(w, 1)]
    return Partition(la)

def orbit(la):
    la = Partition(la)
    n = la.size()
    B = DiscreteDynamicalSystem(Partitions(n), move)
    return B.orbit(la)

@cached_function
def components(n):
    B = DiscreteDynamicalSystem(Partitions(n), move)
    C = {frozenset(c): set(c) for c in B.cycles()}
    E = set(B).difference(*C.values())
    while E:
        e = E.pop()
        if not any(e in c for c in C.values()):
            o, k = B.orbit(e, True)
            c = frozenset(o[k:])
            r = o[:k]
            C[c].update(r)
            E.difference_update(r)
    return C

def component(la):
    la = Partition(la)
    n = la.size()
    B = DiscreteDynamicalSystem(Partitions(n), move)
    o, k = B.orbit(la, preperiod=True)
    return components(n)[frozenset(o[k:])]

def statistic(w):
    return len(component(necklace_to_partition(w))) - len(w.conjugates())

Created
Aug 16, 2023 at 09:15 by Martin Rubey
Updated
Aug 16, 2023 at 09:15 by Martin Rubey