Identifier
- St001916: Binary words ⟶ ℤ
Values
0 => 0
1 => 0
00 => 0
01 => 0
10 => 0
11 => 2
000 => 2
001 => 2
010 => 2
011 => 4
100 => 2
101 => 4
110 => 4
111 => 10
0000 => 10
0001 => 11
0010 => 11
0011 => 11
0100 => 11
0101 => 5
0110 => 11
0111 => 26
1000 => 11
1001 => 11
1010 => 5
1011 => 26
1100 => 11
1101 => 26
1110 => 26
1111 => 41
00000 => 41
00001 => 51
00010 => 51
00011 => 40
00100 => 51
00101 => 27
00110 => 40
00111 => 62
01000 => 51
01001 => 27
01010 => 27
01011 => 29
01100 => 40
01101 => 29
01110 => 62
01111 => 130
10000 => 51
10001 => 40
10010 => 27
10011 => 62
10100 => 27
10101 => 29
10110 => 29
10111 => 130
11000 => 40
11001 => 62
11010 => 29
11011 => 130
11100 => 62
11101 => 130
11110 => 130
11111 => 175
000000 => 175
000001 => 225
000010 => 225
000011 => 179
000100 => 225
000101 => 81
000110 => 179
000111 => 208
001000 => 225
001001 => 22
001010 => 81
001011 => 74
001100 => 179
001101 => 59
001110 => 208
001111 => 316
010000 => 225
010001 => 81
010010 => 22
010011 => 59
010100 => 81
010101 => 24
010110 => 74
010111 => 127
011000 => 179
011001 => 74
011010 => 59
011011 => 32
011100 => 208
011101 => 127
011110 => 316
011111 => 621
100000 => 225
100001 => 179
100010 => 81
100011 => 208
100100 => 22
100101 => 74
100110 => 59
>>> Load all 511 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of transient elements in the orbit of Bulgarian solitaire corresponding to a necklace.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way. The binary words corresponding to a necklace index the recurrent elements in a component, the remaining elements are called transient.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way. The binary words corresponding to a necklace index the recurrent elements in a component, the remaining elements are called transient.
References
[1] Brandt, Jør. Cycles of partitions MathSciNet:0656129
[2] Society, pages 483–486, 1982
[2] Society, pages 483–486, 1982
Code
def move(la):
return Partition(sorted([p-1 for p in la] + [len(la)], reverse=True))
def necklace_to_partition(w):
m = len(w)
la = [m - i + b for i, b in enumerate(w, 1)]
return Partition(la)
def orbit(la):
la = Partition(la)
n = la.size()
B = DiscreteDynamicalSystem(Partitions(n), move)
return B.orbit(la)
@cached_function
def components(n):
B = DiscreteDynamicalSystem(Partitions(n), move)
C = {frozenset(c): set(c) for c in B.cycles()}
E = set(B).difference(*C.values())
while E:
e = E.pop()
if not any(e in c for c in C.values()):
o, k = B.orbit(e, True)
c = frozenset(o[k:])
r = o[:k]
C[c].update(r)
E.difference_update(r)
return C
def component(la):
la = Partition(la)
n = la.size()
B = DiscreteDynamicalSystem(Partitions(n), move)
o, k = B.orbit(la, preperiod=True)
return components(n)[frozenset(o[k:])]
def statistic(w):
return len(component(necklace_to_partition(w))) - len(w.conjugates())
Created
Aug 16, 2023 at 09:15 by Martin Rubey
Updated
Aug 16, 2023 at 09:15 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!