Identifier
- St001916: Binary words ⟶ ℤ
Values
=>
0=>0
1=>0
00=>0
01=>0
10=>0
11=>2
000=>2
001=>2
010=>2
011=>4
100=>2
101=>4
110=>4
111=>10
0000=>10
0001=>11
0010=>11
0011=>11
0100=>11
0101=>5
0110=>11
0111=>26
1000=>11
1001=>11
1010=>5
1011=>26
1100=>11
1101=>26
1110=>26
1111=>41
00000=>41
00001=>51
00010=>51
00011=>40
00100=>51
00101=>27
00110=>40
00111=>62
01000=>51
01001=>27
01010=>27
01011=>29
01100=>40
01101=>29
01110=>62
01111=>130
10000=>51
10001=>40
10010=>27
10011=>62
10100=>27
10101=>29
10110=>29
10111=>130
11000=>40
11001=>62
11010=>29
11011=>130
11100=>62
11101=>130
11110=>130
11111=>175
000000=>175
000001=>225
000010=>225
000011=>179
000100=>225
000101=>81
000110=>179
000111=>208
001000=>225
001001=>22
001010=>81
001011=>74
001100=>179
001101=>59
001110=>208
001111=>316
010000=>225
010001=>81
010010=>22
010011=>59
010100=>81
010101=>24
010110=>74
010111=>127
011000=>179
011001=>74
011010=>59
011011=>32
011100=>208
011101=>127
011110=>316
011111=>621
100000=>225
100001=>179
100010=>81
100011=>208
100100=>22
100101=>74
100110=>59
100111=>316
101000=>81
101001=>59
101010=>24
101011=>127
101100=>74
101101=>32
101110=>127
101111=>621
110000=>179
110001=>208
110010=>74
110011=>316
110100=>59
110101=>127
110110=>32
110111=>621
111000=>208
111001=>316
111010=>127
111011=>621
111100=>316
111101=>621
111110=>621
111111=>791
0000000=>791
0000001=>995
0000010=>995
0000011=>804
0000100=>995
0000101=>287
0000110=>804
0000111=>770
0001000=>995
0001001=>143
0001010=>287
0001011=>329
0001100=>804
0001101=>182
0001110=>770
0001111=>1107
0010000=>995
0010001=>143
0010010=>143
0010011=>118
0010100=>287
0010101=>141
0010110=>329
0010111=>279
0011000=>804
0011001=>118
0011010=>182
0011011=>138
0011100=>770
0011101=>248
0011110=>1107
0011111=>1630
0100000=>995
0100001=>287
0100010=>143
0100011=>182
0100100=>143
0100101=>141
0100110=>118
0100111=>248
0101000=>287
0101001=>141
0101010=>141
0101011=>151
0101100=>329
0101101=>151
0101110=>279
0101111=>537
0110000=>804
0110001=>329
0110010=>118
0110011=>138
0110100=>182
0110101=>151
0110110=>138
0110111=>248
0111000=>770
0111001=>279
0111010=>248
0111011=>248
0111100=>1107
0111101=>537
0111110=>1630
0111111=>3003
1000000=>995
1000001=>804
1000010=>287
1000011=>770
1000100=>143
1000101=>329
1000110=>182
1000111=>1107
1001000=>143
1001001=>118
1001010=>141
1001011=>279
1001100=>118
1001101=>138
1001110=>248
1001111=>1630
1010000=>287
1010001=>182
1010010=>141
1010011=>248
1010100=>141
1010101=>151
1010110=>151
1010111=>537
1011000=>329
1011001=>138
1011010=>151
1011011=>248
1011100=>279
1011101=>248
1011110=>537
1011111=>3003
1100000=>804
1100001=>770
1100010=>329
1100011=>1107
1100100=>118
1100101=>279
1100110=>138
1100111=>1630
1101000=>182
1101001=>248
1101010=>151
1101011=>537
1101100=>138
1101101=>248
1101110=>248
1101111=>3003
1110000=>770
1110001=>1107
1110010=>279
1110011=>1630
1110100=>248
1110101=>537
1110110=>248
1110111=>3003
1111000=>1107
1111001=>1630
1111010=>537
1111011=>3003
1111100=>1630
1111101=>3003
1111110=>3003
1111111=>3717
00000000=>3717
00000001=>4557
00000010=>4557
00000011=>3719
00000100=>4557
00000101=>1144
00000110=>3719
00000111=>3872
00001000=>4557
00001001=>492
00001010=>1144
00001011=>807
00001100=>3719
00001101=>739
00001110=>3872
00001111=>4412
00010000=>4557
00010001=>221
00010010=>492
00010011=>367
00010100=>1144
00010101=>412
00010110=>807
00010111=>1068
00011000=>3719
00011001=>352
00011010=>739
00011011=>406
00011100=>3872
00011101=>794
00011110=>4412
00011111=>5964
00100000=>4557
00100001=>492
00100010=>221
00100011=>352
00100100=>492
00100101=>237
00100110=>367
00100111=>462
00101000=>1144
00101001=>237
00101010=>412
00101011=>301
00101100=>807
00101101=>308
00101110=>1068
00101111=>1074
00110000=>3719
00110001=>367
00110010=>352
00110011=>146
00110100=>739
00110101=>287
00110110=>406
00110111=>517
00111000=>3872
00111001=>462
00111010=>794
00111011=>516
00111100=>4412
00111101=>1150
00111110=>5964
00111111=>8455
01000000=>4557
01000001=>1144
01000010=>492
01000011=>739
01000100=>221
01000101=>412
01000110=>352
01000111=>794
01001000=>492
01001001=>237
01001010=>237
01001011=>308
01001100=>367
01001101=>287
01001110=>462
01001111=>1150
01010000=>1144
01010001=>412
01010010=>237
01010011=>287
01010100=>412
01010101=>95
01010110=>301
01010111=>585
01011000=>807
01011001=>301
01011010=>308
01011011=>281
01011100=>1068
01011101=>585
01011110=>1074
01011111=>2406
01100000=>3719
01100001=>807
01100010=>367
01100011=>406
01100100=>352
01100101=>301
01100110=>146
01100111=>516
01101000=>739
01101001=>308
01101010=>287
01101011=>281
01101100=>406
01101101=>281
01101110=>517
01101111=>975
01110000=>3872
01110001=>1068
01110010=>462
01110011=>517
01110100=>794
01110101=>585
01110110=>516
01110111=>446
01111000=>4412
01111001=>1074
01111010=>1150
01111011=>975
01111100=>5964
01111101=>2406
01111110=>8455
01111111=>14875
10000000=>4557
10000001=>3719
10000010=>1144
10000011=>3872
10000100=>492
10000101=>807
10000110=>739
10000111=>4412
10001000=>221
10001001=>367
10001010=>412
10001011=>1068
10001100=>352
10001101=>406
10001110=>794
10001111=>5964
10010000=>492
10010001=>352
10010010=>237
10010011=>462
10010100=>237
10010101=>301
10010110=>308
10010111=>1074
10011000=>367
10011001=>146
10011010=>287
10011011=>517
10011100=>462
10011101=>516
10011110=>1150
10011111=>8455
10100000=>1144
10100001=>739
10100010=>412
10100011=>794
10100100=>237
10100101=>308
10100110=>287
10100111=>1150
10101000=>412
10101001=>287
10101010=>95
10101011=>585
10101100=>301
10101101=>281
10101110=>585
10101111=>2406
10110000=>807
10110001=>406
10110010=>301
10110011=>516
10110100=>308
10110101=>281
10110110=>281
10110111=>975
10111000=>1068
10111001=>517
10111010=>585
10111011=>446
10111100=>1074
10111101=>975
10111110=>2406
10111111=>14875
11000000=>3719
11000001=>3872
11000010=>807
11000011=>4412
11000100=>367
11000101=>1068
11000110=>406
11000111=>5964
11001000=>352
11001001=>462
11001010=>301
11001011=>1074
11001100=>146
11001101=>517
11001110=>516
11001111=>8455
11010000=>739
11010001=>794
11010010=>308
11010011=>1150
11010100=>287
11010101=>585
11010110=>281
11010111=>2406
11011000=>406
11011001=>516
11011010=>281
11011011=>975
11011100=>517
11011101=>446
11011110=>975
11011111=>14875
11100000=>3872
11100001=>4412
11100010=>1068
11100011=>5964
11100100=>462
11100101=>1074
11100110=>517
11100111=>8455
11101000=>794
11101001=>1150
11101010=>585
11101011=>2406
11101100=>516
11101101=>975
11101110=>446
11101111=>14875
11110000=>4412
11110001=>5964
11110010=>1074
11110011=>8455
11110100=>1150
11110101=>2406
11110110=>975
11110111=>14875
11111000=>5964
11111001=>8455
11111010=>2406
11111011=>14875
11111100=>8455
11111101=>14875
11111110=>14875
11111111=>17976
000000000=>17976
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of transient elements in the orbit of Bulgarian solitaire corresponding to a necklace.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way. The binary words corresponding to a necklace index the recurrent elements in a component, the remaining elements are called transient.
A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row.
The connected components of the corresponding discrete dynamical system are indexed by necklaces in a natural way. The binary words corresponding to a necklace index the recurrent elements in a component, the remaining elements are called transient.
References
[1] Brandt, Jør. Cycles of partitions MathSciNet:0656129
[2] Society, pages 483–486, 1982
[2] Society, pages 483–486, 1982
Code
def move(la): return Partition(sorted([p-1 for p in la] + [len(la)], reverse=True)) def necklace_to_partition(w): m = len(w) la = [m - i + b for i, b in enumerate(w, 1)] return Partition(la) def orbit(la): la = Partition(la) n = la.size() B = DiscreteDynamicalSystem(Partitions(n), move) return B.orbit(la) @cached_function def components(n): B = DiscreteDynamicalSystem(Partitions(n), move) C = {frozenset(c): set(c) for c in B.cycles()} E = set(B).difference(*C.values()) while E: e = E.pop() if not any(e in c for c in C.values()): o, k = B.orbit(e, True) c = frozenset(o[k:]) r = o[:k] C[c].update(r) E.difference_update(r) return C def component(la): la = Partition(la) n = la.size() B = DiscreteDynamicalSystem(Partitions(n), move) o, k = B.orbit(la, preperiod=True) return components(n)[frozenset(o[k:])] def statistic(w): return len(component(necklace_to_partition(w))) - len(w.conjugates())
Created
Aug 16, 2023 at 09:15 by Martin Rubey
Updated
Aug 16, 2023 at 09:15 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!