Identifier
-
Mp00154:
Graphs
—core⟶
Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St001918: Integer partitions ⟶ ℤ
Values
([],1) => ([],1) => [1] => 0
([],2) => ([],1) => [1] => 0
([(0,1)],2) => ([(0,1)],2) => [2] => 1
([],3) => ([],1) => [1] => 0
([(1,2)],3) => ([(0,1)],2) => [2] => 1
([(0,2),(1,2)],3) => ([(0,1)],2) => [2] => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([],4) => ([],1) => [1] => 0
([(2,3)],4) => ([(0,1)],2) => [2] => 1
([(1,3),(2,3)],4) => ([(0,1)],2) => [2] => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => [2] => 1
([(0,3),(1,2)],4) => ([(0,1)],2) => [2] => 1
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => [2] => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => [2] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 3
([],5) => ([],1) => [1] => 0
([(3,4)],5) => ([(0,1)],2) => [2] => 1
([(2,4),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(1,4),(2,3)],5) => ([(0,1)],2) => [2] => 1
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => [2] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => [2] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => [2] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => [2] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 4
([],6) => ([],1) => [1] => 0
([(4,5)],6) => ([(0,1)],2) => [2] => 1
([(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(2,5),(3,4)],6) => ([(0,1)],2) => [2] => 1
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => [2] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => [2] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => [2] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => [2] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [3] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 1
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition.
Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$.
The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is
$$ \sum_{p\in\lambda} [p]_{q^{N/p}}, $$
where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer.
This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals
$$ \left(1 - \frac{1}{\lambda_1}\right) N, $$
where $\lambda_1$ is the largest part of $\lambda$.
The statistic is undefined for the empty partition.
Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$.
The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is
$$ \sum_{p\in\lambda} [p]_{q^{N/p}}, $$
where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer.
This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals
$$ \left(1 - \frac{1}{\lambda_1}\right) N, $$
where $\lambda_1$ is the largest part of $\lambda$.
The statistic is undefined for the empty partition.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!