Identifier
- St001938: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>4
[1,1,1]=>8
[4]=>5
[3,1]=>15
[2,2]=>18
[2,1,1]=>48
[1,1,1,1]=>144
[5]=>14
[4,1]=>56
[3,2]=>72
[3,1,1]=>240
[2,2,1]=>288
[2,1,1,1]=>1056
[1,1,1,1,1]=>4224
[6]=>42
[5,1]=>210
[4,2]=>280
[4,1,1]=>1120
[3,3]=>300
[3,2,1]=>1440
[3,1,1,1]=>6240
[2,2,2]=>1728
[2,2,1,1]=>7488
[2,1,1,1,1]=>34944
[1,1,1,1,1,1]=>174720
[7]=>132
[6,1]=>792
[5,2]=>1080
[5,1,1]=>5040
[4,3]=>1200
[4,2,1]=>6720
[4,1,1,1]=>33600
[3,3,1]=>7200
[3,2,2]=>8640
[3,2,1,1]=>43200
[3,1,1,1,1]=>230400
[2,2,2,1]=>51840
[2,2,1,1,1]=>276480
[2,1,1,1,1,1]=>1566720
[1,1,1,1,1,1,1]=>9400320
[8]=>429
[7,1]=>3003
[6,2]=>4158
[6,1,1]=>22176
[5,3]=>4725
[5,2,1]=>30240
[5,1,1,1]=>171360
[4,4]=>4900
[4,3,1]=>33600
[4,2,2]=>40320
[4,2,1,1]=>228480
[4,1,1,1,1]=>1370880
[3,3,2]=>43200
[3,3,1,1]=>244800
[3,2,2,1]=>293760
[3,2,1,1,1]=>1762560
[3,1,1,1,1,1]=>11162880
[2,2,2,2]=>352512
[2,2,2,1,1]=>2115072
[2,2,1,1,1,1]=>13395456
[2,1,1,1,1,1,1]=>89303040
[1,1,1,1,1,1,1,1]=>625121280
[9]=>1430
[8,1]=>11440
[7,2]=>16016
[7,1,1]=>96096
[6,3]=>18480
[6,2,1]=>133056
[6,1,1,1]=>842688
[5,4]=>19600
[5,3,1]=>151200
[5,2,2]=>181440
[5,2,1,1]=>1149120
[5,1,1,1,1]=>7660800
[4,4,1]=>156800
[4,3,2]=>201600
[4,3,1,1]=>1276800
[4,2,2,1]=>1532160
[4,2,1,1,1]=>10214400
[4,1,1,1,1,1]=>71500800
[3,3,3]=>216000
[3,3,2,1]=>1641600
[3,3,1,1,1]=>10944000
[3,2,2,2]=>1969920
[3,2,2,1,1]=>13132800
[3,2,1,1,1,1]=>91929600
[3,1,1,1,1,1,1]=>674150400
[2,2,2,2,1]=>15759360
[2,2,2,1,1,1]=>110315520
[2,2,1,1,1,1,1]=>808980480
[10]=>4862
[9,1]=>43758
[8,2]=>61776
[8,1,1]=>411840
[7,3]=>72072
[7,2,1]=>576576
[7,1,1,1]=>4036032
[6,4]=>77616
[6,3,1]=>665280
[6,2,2]=>798336
[6,2,1,1]=>5588352
[6,1,1,1,1]=>40981248
[5,5]=>79380
[5,4,1]=>705600
[5,3,2]=>907200
[5,3,1,1]=>6350400
[5,2,2,1]=>7620480
[5,2,1,1,1]=>55883520
[5,1,1,1,1,1]=>428440320
[4,4,2]=>940800
[4,4,1,1]=>6585600
[4,3,3]=>1008000
[4,3,2,1]=>8467200
[4,3,1,1,1]=>62092800
[4,2,2,2]=>10160640
[4,2,2,1,1]=>74511360
[4,2,1,1,1,1]=>571253760
[3,3,3,1]=>9072000
[3,3,2,2]=>10886400
[3,3,2,1,1]=>79833600
[3,3,1,1,1,1]=>612057600
[3,2,2,2,1]=>95800320
[3,2,2,1,1,1]=>734469120
[2,2,2,2,2]=>114960384
[2,2,2,2,1,1]=>881362944
[11]=>16796
[10,1]=>167960
[9,2]=>238680
[9,1,1]=>1750320
[8,3]=>280800
[8,2,1]=>2471040
[8,1,1,1]=>18944640
[7,4]=>305760
[7,3,1]=>2882880
[7,2,2]=>3459456
[7,2,1,1]=>26522496
[7,1,1,1,1]=>212179968
[6,5]=>317520
[6,4,1]=>3104640
[6,3,2]=>3991680
[6,3,1,1]=>30602880
[6,2,2,1]=>36723456
[6,2,1,1,1]=>293787648
[5,5,1]=>3175200
[5,4,2]=>4233600
[5,4,1,1]=>32457600
[5,3,3]=>4536000
[5,3,2,1]=>41731200
[5,3,1,1,1]=>333849600
[5,2,2,2]=>50077440
[5,2,2,1,1]=>400619520
[4,4,3]=>4704000
[4,4,2,1]=>43276800
[4,4,1,1,1]=>346214400
[4,3,3,1]=>46368000
[4,3,2,2]=>55641600
[4,3,2,1,1]=>445132800
[4,2,2,2,1]=>534159360
[3,3,3,2]=>59616000
[3,3,3,1,1]=>476928000
[3,3,2,2,1]=>572313600
[3,2,2,2,2]=>686776320
[12]=>58786
[11,1]=>646646
[10,2]=>923780
[10,1,1]=>7390240
[9,3]=>1093950
[9,2,1]=>10501920
[9,1,1,1]=>87516000
[8,4]=>1201200
[8,3,1]=>12355200
[8,2,2]=>14826240
[8,2,1,1]=>123552000
[8,1,1,1,1]=>1070784000
[7,5]=>1261260
[7,4,1]=>13453440
[7,3,2]=>17297280
[7,3,1,1]=>144144000
[7,2,2,1]=>172972800
[7,2,1,1,1]=>1499097600
[6,6]=>1280664
[6,5,1]=>13970880
[6,4,2]=>18627840
[6,4,1,1]=>155232000
[6,3,3]=>19958400
[6,3,2,1]=>199584000
[6,3,1,1,1]=>1729728000
[6,2,2,2]=>239500800
[6,2,2,1,1]=>2075673600
[5,5,2]=>19051200
[5,5,1,1]=>158760000
[5,4,3]=>21168000
[5,4,2,1]=>211680000
[5,4,1,1,1]=>1834560000
[5,3,3,1]=>226800000
[5,3,2,2]=>272160000
[4,4,4]=>21952000
[4,4,3,1]=>235200000
[4,4,2,2]=>282240000
[4,3,3,2]=>302400000
[3,3,3,3]=>324000000
[13]=>208012
[12,1]=>2496144
[11,2]=>3581424
[11,1,1]=>31039008
[10,3]=>4263600
[10,2,1]=>44341440
[10,1,1,1]=>399072960
[9,4]=>4712400
[9,3,1]=>52509600
[9,2,2]=>63011520
[9,2,1,1]=>567103680
[8,5]=>4989600
[8,4,1]=>57657600
[8,3,2]=>74131200
[8,3,1,1]=>667180800
[8,2,2,1]=>800616960
[7,6]=>5122656
[7,5,1]=>60540480
[7,4,2]=>80720640
[7,4,1,1]=>726485760
[7,3,3]=>86486400
[7,3,2,1]=>934053120
[7,2,2,2]=>1120863744
[6,6,1]=>61471872
[6,5,2]=>83825280
[6,5,1,1]=>754427520
[6,4,3]=>93139200
[6,4,2,1]=>1005903360
[6,3,3,1]=>1077753600
[6,3,2,2]=>1293304320
[5,5,3]=>95256000
[5,5,2,1]=>1028764800
[5,4,4]=>98784000
[5,4,3,1]=>1143072000
[5,4,2,2]=>1371686400
[5,3,3,2]=>1469664000
[4,4,4,1]=>1185408000
[4,4,3,2]=>1524096000
[4,3,3,3]=>1632960000
[14]=>742900
[13,1]=>9657700
[12,2]=>13907088
[12,1,1]=>129799488
[11,3]=>16628040
[11,2,1]=>186234048
[11,1,1,1]=>1800262464
[10,4]=>18475600
[10,3,1]=>221707200
[10,2,2]=>266048640
[9,5]=>19691100
[9,4,1]=>245044800
[9,3,2]=>315057600
[8,6]=>20386080
[8,5,1]=>259459200
[8,4,2]=>345945600
[8,3,3]=>370656000
[7,7]=>20612592
[7,6,1]=>266378112
[7,5,2]=>363242880
[7,4,3]=>403603200
[6,6,2]=>368831232
[6,5,3]=>419126400
[6,4,4]=>434649600
[5,5,4]=>444528000
[15]=>2674440
[14,1]=>37442160
[13,2]=>54083120
[13,1,1]=>540831200
[12,3]=>64899744
[12,2,1]=>778796928
[11,4]=>72424352
[11,3,1]=>931170240
[11,2,2]=>1117404288
[10,5]=>77597520
[10,4,1]=>1034633600
[10,3,2]=>1330243200
[9,6]=>80864784
[9,5,1]=>1102701600
[9,4,2]=>1470268800
[9,3,3]=>1575288000
[8,7]=>82450368
[8,6,1]=>1141620480
[8,5,2]=>1556755200
[8,4,3]=>1729728000
[7,7,1]=>1154305152
[7,6,2]=>1598268672
[7,5,3]=>1816214400
[7,4,4]=>1883481600
[6,6,3]=>1844156160
[6,5,4]=>1955923200
[5,5,5]=>2000376000
[16]=>9694845
[15,1]=>145422675
[14,2]=>210612150
[13,3]=>253514625
[12,4]=>283936380
[11,5]=>305540235
[10,6]=>320089770
[9,7]=>328513185
[8,8]=>331273800
[17]=>35357670
[16,1]=>565722720
[15,2]=>821210400
[14,3]=>991116000
[13,4]=>1113476000
[12,5]=>1202554080
[11,6]=>1265296032
[10,7]=>1305464160
[9,8]=>1325095200
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of transitive monotone factorizations of genus zero of a permutation of given cycle type.
Let $\pi$ be a permutation of cycle type $\mu$. A transitive monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ is a tuple of $r = n + \ell(\mu) - 2$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, such that the subgroup of $\mathfrak S_n$ generated by the transpositions acts transitively on $\{1,\dots,n\}$ and hose product, in this order, is $\pi$.
Let $\pi$ be a permutation of cycle type $\mu$. A transitive monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ is a tuple of $r = n + \ell(\mu) - 2$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, such that the subgroup of $\mathfrak S_n$ generated by the transpositions acts transitively on $\{1,\dots,n\}$ and hose product, in this order, is $\pi$.
References
[1] Goulden, I. P., Guay-Paquet, M., Novak, J. Monotone Hurwitz numbers in genus zero MathSciNet:3095005
Code
def statistic(mu): return Hurwitz(mu) / mu.conjugacy_class_size() def Hurwitz(alpha): alpha = Partition(alpha) d = alpha.size() r = factorial(d) / prod(factorial(m) for m in alpha.to_exp()) * prod(binomial(2*p, p) for p in alpha) k = len(alpha) - 3 if k >= 0: return r * rising_factorial(2*d + 1, k) return r / rising_factorial(2*d + k + 1, -k)
Created
Jan 01, 2024 at 23:37 by Martin Rubey
Updated
Aug 05, 2024 at 22:53 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!