edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>4 ['A',2]=>8 ['B',2]=>22 ['G',2]=>32 ['A',3]=>21 ['B',3]=>84 ['C',3]=>84 ['A',4]=>39 ['B',4]=>325 ['C',4]=>325 ['D',4]=>146 ['F',4]=>441 ['A',5]=>92 ['B',5]=>1096 ['C',5]=>1096 ['D',5]=>274 ['A',6]=>170 ['B',6]=>3632 ['C',6]=>3632 ['D',6]=>1216 ['E',6]=>448 ['A',7]=>360 ['B',7]=>11184 ['C',7]=>11184 ['D',7]=>2796
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number conjugacy classes of pairs of commuting elements in the Weyl group of given Cartan type.
For any finite group $G$, this statistic is the cardinality of the set
$$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$
where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$
References
[1] (reference broken) mathoverflow 468354
Code
def statistic(ct):
    G = WeylGroup(ct)
    r = 0
    for c in G.conjugacy_classes_representatives():
        C = G.centralizer(c)
        r += len(C.conjugacy_classes())
    return r

Created
Apr 05, 2024 at 11:43 by Martin Rubey
Updated
Apr 05, 2024 at 11:43 by Martin Rubey