Identifier
            
            - St001944: Finite Cartan types ⟶ ℤ
 
                Values
            
            
                        =>
                        
                    
                            Cc0022;cc-rep
                            
                            
                            
                    
                        ['A',1]=>4
['A',2]=>8
['B',2]=>22
['G',2]=>32
['A',3]=>21
['B',3]=>84
['C',3]=>84
['A',4]=>39
['B',4]=>325
['C',4]=>325
['D',4]=>146
['F',4]=>441
['A',5]=>92
['B',5]=>1096
['C',5]=>1096
['D',5]=>274
['A',6]=>170
['B',6]=>3632
['C',6]=>3632
['D',6]=>1216
['E',6]=>448
['A',7]=>360
['B',7]=>11184
['C',7]=>11184
['D',7]=>2796
                    
                    
                    
                
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The number conjugacy classes of pairs of commuting elements in the Weyl group of given Cartan type.
For any finite group $G$, this statistic is the cardinality of the set
$$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$
where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$
	For any finite group $G$, this statistic is the cardinality of the set
$$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$
where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$
References
            [1] (reference broken) mathoverflow 468354
	Code
            
def statistic(ct):
    G = WeylGroup(ct)
    r = 0
    for c in G.conjugacy_classes_representatives():
        C = G.centralizer(c)
        r += len(C.conjugacy_classes())
    return r
Created
            Apr 05, 2024 at 11:43 by Martin Rubey
	Updated
            Apr 05, 2024 at 11:43 by Martin Rubey
	searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!