Identifier
- St001944: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>4
['A',2]=>8
['B',2]=>22
['G',2]=>32
['A',3]=>21
['B',3]=>84
['C',3]=>84
['A',4]=>39
['B',4]=>325
['C',4]=>325
['D',4]=>146
['F',4]=>441
['A',5]=>92
['B',5]=>1096
['C',5]=>1096
['D',5]=>274
['A',6]=>170
['B',6]=>3632
['C',6]=>3632
['D',6]=>1216
['E',6]=>448
['A',7]=>360
['B',7]=>11184
['C',7]=>11184
['D',7]=>2796
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number conjugacy classes of pairs of commuting elements in the Weyl group of given Cartan type.
For any finite group $G$, this statistic is the cardinality of the set
$$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$
where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$
For any finite group $G$, this statistic is the cardinality of the set
$$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$
where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$
References
[1] (reference broken) mathoverflow 468354
Code
def statistic(ct): G = WeylGroup(ct) r = 0 for c in G.conjugacy_classes_representatives(): C = G.centralizer(c) r += len(C.conjugacy_classes()) return r
Created
Apr 05, 2024 at 11:43 by Martin Rubey
Updated
Apr 05, 2024 at 11:43 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!