edit this statistic or download as text // json
Identifier
Values
=>
[1]=>0 [1,1]=>0 [1,2]=>0 [2,1]=>1 [1,1,1]=>0 [1,1,2]=>0 [1,2,1]=>1 [2,1,1]=>1 [1,1,3]=>0 [1,3,1]=>1 [3,1,1]=>1 [1,2,2]=>0 [2,1,2]=>1 [2,2,1]=>1 [1,2,3]=>0 [1,3,2]=>1 [2,1,3]=>1 [2,3,1]=>1 [3,1,2]=>1 [3,2,1]=>2 [1,1,1,1]=>0 [1,1,1,2]=>0 [1,1,2,1]=>1 [1,2,1,1]=>1 [2,1,1,1]=>1 [1,1,1,3]=>0 [1,1,3,1]=>1 [1,3,1,1]=>1 [3,1,1,1]=>1 [1,1,1,4]=>0 [1,1,4,1]=>1 [1,4,1,1]=>1 [4,1,1,1]=>1 [1,1,2,2]=>0 [1,2,1,2]=>1 [1,2,2,1]=>1 [2,1,1,2]=>1 [2,1,2,1]=>2 [2,2,1,1]=>1 [1,1,2,3]=>0 [1,1,3,2]=>1 [1,2,1,3]=>1 [1,2,3,1]=>1 [1,3,1,2]=>1 [1,3,2,1]=>2 [2,1,1,3]=>1 [2,1,3,1]=>2 [2,3,1,1]=>1 [3,1,1,2]=>1 [3,1,2,1]=>2 [3,2,1,1]=>2 [1,1,2,4]=>0 [1,1,4,2]=>1 [1,2,1,4]=>1 [1,2,4,1]=>1 [1,4,1,2]=>1 [1,4,2,1]=>2 [2,1,1,4]=>1 [2,1,4,1]=>2 [2,4,1,1]=>1 [4,1,1,2]=>1 [4,1,2,1]=>2 [4,2,1,1]=>2 [1,1,3,3]=>0 [1,3,1,3]=>1 [1,3,3,1]=>1 [3,1,1,3]=>1 [3,1,3,1]=>2 [3,3,1,1]=>1 [1,1,3,4]=>0 [1,1,4,3]=>1 [1,3,1,4]=>1 [1,3,4,1]=>1 [1,4,1,3]=>1 [1,4,3,1]=>2 [3,1,1,4]=>1 [3,1,4,1]=>2 [3,4,1,1]=>1 [4,1,1,3]=>1 [4,1,3,1]=>2 [4,3,1,1]=>2 [1,2,2,2]=>0 [2,1,2,2]=>1 [2,2,1,2]=>1 [2,2,2,1]=>1 [1,2,2,3]=>0 [1,2,3,2]=>1 [1,3,2,2]=>1 [2,1,2,3]=>1 [2,1,3,2]=>2 [2,2,1,3]=>1 [2,2,3,1]=>1 [2,3,1,2]=>1 [2,3,2,1]=>2 [3,1,2,2]=>1 [3,2,1,2]=>2 [3,2,2,1]=>2 [1,2,2,4]=>0 [1,2,4,2]=>1 [1,4,2,2]=>1 [2,1,2,4]=>1 [2,1,4,2]=>2 [2,2,1,4]=>1 [2,2,4,1]=>1 [2,4,1,2]=>1 [2,4,2,1]=>2 [4,1,2,2]=>1 [4,2,1,2]=>2 [4,2,2,1]=>2 [1,2,3,3]=>0 [1,3,2,3]=>1 [1,3,3,2]=>1 [2,1,3,3]=>1 [2,3,1,3]=>1 [2,3,3,1]=>1 [3,1,2,3]=>1 [3,1,3,2]=>2 [3,2,1,3]=>2 [3,2,3,1]=>2 [3,3,1,2]=>1 [3,3,2,1]=>2 [1,2,3,4]=>0 [1,2,4,3]=>1 [1,3,2,4]=>1 [1,3,4,2]=>1 [1,4,2,3]=>1 [1,4,3,2]=>2 [2,1,3,4]=>1 [2,1,4,3]=>2 [2,3,1,4]=>1 [2,3,4,1]=>1 [2,4,1,3]=>1 [2,4,3,1]=>2 [3,1,2,4]=>1 [3,1,4,2]=>2 [3,2,1,4]=>2 [3,2,4,1]=>2 [3,4,1,2]=>1 [3,4,2,1]=>2 [4,1,2,3]=>1 [4,1,3,2]=>2 [4,2,1,3]=>2 [4,2,3,1]=>2 [4,3,1,2]=>2 [4,3,2,1]=>3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of descents in a parking function.
This is the number of indices $i$ such that $p_i > p_{i+1}$.
References
[1] Schumacher, P.R.F. Descents in Parking Functions, Journal of Integer Sequences, Vol. 21 (2018), Article 18.2.3. https://www.emis.de/journals/JIS/VOL21/Schumacher/schu5.pdf
Code
def statistic(p):
    return sum(1 for i in range(len(p)-1) if p[i] > p[i+1])

Created
May 24, 2024 at 20:37 by Jennifer Elder
Updated
May 24, 2024 at 20:37 by Jennifer Elder