***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001950 ----------------------------------------------------------------------------- Collection: Finite Cartan types ----------------------------------------------------------------------------- Description: The minimal size of a base for the Weyl group of the Cartan type. A base of a permutation group is a set $B$ such that the pointwise stabilizer of $B$ is trivial. For example, a base of the symmetric group on $n$ letters must contain all but one letter. Any base has at least $\log |G|/n$ elements, where $n$ is the degree of the group, i.e., the size of its domain. ----------------------------------------------------------------------------- References: [1] [[wikipedia:Base_(group_theory)]] ----------------------------------------------------------------------------- Code: def minimal_base(G): """ EXAMPLES:: sage: [G for G in SymmetricGroup(7).conjugacy_classes_subgroups() if G.base() != minimal_base(G)] [Subgroup generated by [(2,4,5,7,3), (2,3)(4,7), (1,6)(2,7,3,4)] of (Symmetric group of order 7! as a permutation group)] """ b = G.base() for i in range(ceil(log(G.cardinality())/log(G.degree())), len(b)): for s in Subsets(G.domain(), i): nb = G.base(seed=s) if len(nb) < len(b): return nb return b def statistic(ct): return len(minimal_base(WeylGroup(ct, implementation="permutation"))) ----------------------------------------------------------------------------- Statistic values: ['A',1] => 1 ['A',2] => 1 ['B',2] => 2 ['G',2] => 2 ['A',3] => 2 ['B',3] => 2 ['C',3] => 2 ['A',4] => 2 ['B',4] => 3 ['C',4] => 3 ['D',4] => 2 ['F',4] => 3 ['A',5] => 3 ['B',5] => 4 ['C',5] => 4 ['D',5] => 3 ['A',6] => 4 ['B',6] => 4 ['C',6] => 4 ['D',6] => 4 ['E',6] => 4 ['A',7] => 5 ['B',7] => 5 ['C',7] => 5 ['D',7] => 4 ['E',7] => 5 ['A',8] => 6 ['B',8] => 6 ['C',8] => 6 ['D',8] => 5 ['E',8] => 7 ----------------------------------------------------------------------------- Created: Jul 05, 2024 at 11:04 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Jul 05, 2024 at 11:04 by Martin Rubey