Identifier
- St001952: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>1
['A',2]=>1
['B',2]=>3
['G',2]=>3
['A',3]=>2
['B',3]=>5
['C',3]=>5
['A',4]=>2
['B',4]=>8
['C',4]=>8
['D',4]=>6
['F',4]=>7
['A',5]=>3
['B',5]=>11
['C',5]=>11
['D',5]=>5
['A',6]=>3
['B',6]=>15
['C',6]=>15
['D',6]=>10
['E',6]=>4
['A',7]=>4
['B',7]=>19
['C',7]=>19
['D',7]=>9
['E',7]=>9
['A',8]=>4
['B',8]=>24
['C',8]=>24
['D',8]=>15
['E',8]=>9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of conjugacy classes in the Weyl group of finite Cartan type whose elements are involutions.
Code
def statistic(ct): return sum(1 for w in WeylGroup(ct).conjugacy_classes_representatives() if w.order() == 2)
Created
Jul 09, 2024 at 12:00 by Martin Rubey
Updated
Jul 09, 2024 at 12:00 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!