edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>1 ['B',2]=>3 ['G',2]=>3 ['A',3]=>2 ['B',3]=>5 ['C',3]=>5 ['A',4]=>2 ['B',4]=>8 ['C',4]=>8 ['D',4]=>6 ['F',4]=>7 ['A',5]=>3 ['B',5]=>11 ['C',5]=>11 ['D',5]=>5 ['A',6]=>3 ['B',6]=>15 ['C',6]=>15 ['D',6]=>10 ['E',6]=>4 ['A',7]=>4 ['B',7]=>19 ['C',7]=>19 ['D',7]=>9 ['E',7]=>9 ['A',8]=>4 ['B',8]=>24 ['C',8]=>24 ['D',8]=>15 ['E',8]=>9
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of conjugacy classes in the Weyl group of finite Cartan type whose elements are involutions.
Code
def statistic(ct):
    return sum(1 for w in WeylGroup(ct).conjugacy_classes_representatives() if w.order() == 2)
Created
Jul 09, 2024 at 12:00 by Martin Rubey
Updated
Jul 09, 2024 at 12:00 by Martin Rubey