Identifier
Values
[1] => 0
[2] => 0
[1,1] => 1
[3] => 0
[2,1] => 1
[1,1,1] => 3
[4] => 0
[3,1] => 1
[2,2] => 2
[2,1,1] => 3
[1,1,1,1] => 6
[5] => 0
[4,1] => 1
[3,2] => 1
[3,1,1] => 3
[2,2,1] => 4
[2,1,1,1] => 6
[1,1,1,1,1] => 10
[6] => 0
[5,1] => 1
[4,2] => 2
[4,1,1] => 3
[3,3] => 3
[3,2,1] => 3
[3,1,1,1] => 6
[2,2,2] => 6
[2,2,1,1] => 7
[2,1,1,1,1] => 10
[1,1,1,1,1,1] => 15
[7] => 0
[6,1] => 1
[5,2] => 1
[5,1,1] => 3
[4,3] => 1
[4,2,1] => 4
[4,1,1,1] => 6
[3,3,1] => 5
[3,2,2] => 4
[3,2,1,1] => 6
[3,1,1,1,1] => 10
[2,2,2,1] => 9
[2,2,1,1,1] => 11
[2,1,1,1,1,1] => 15
[1,1,1,1,1,1,1] => 21
[8] => 0
[7,1] => 1
[6,2] => 2
[6,1,1] => 3
[5,3] => 1
[5,2,1] => 3
[5,1,1,1] => 6
[4,4] => 4
[4,3,1] => 3
[4,2,2] => 6
[4,2,1,1] => 7
[4,1,1,1,1] => 10
[3,3,2] => 5
[3,3,1,1] => 8
[3,2,2,1] => 7
[3,2,1,1,1] => 10
[3,1,1,1,1,1] => 15
[2,2,2,2] => 12
[2,2,2,1,1] => 13
[2,2,1,1,1,1] => 16
[2,1,1,1,1,1,1] => 21
[1,1,1,1,1,1,1,1] => 28
[9] => 0
[8,1] => 1
[7,2] => 1
[7,1,1] => 3
[6,3] => 3
[6,2,1] => 4
[6,1,1,1] => 6
[5,4] => 1
[5,3,1] => 3
[5,2,2] => 4
[5,2,1,1] => 6
[5,1,1,1,1] => 10
[4,4,1] => 6
[4,3,2] => 4
[4,3,1,1] => 6
[4,2,2,1] => 9
[4,2,1,1,1] => 11
[4,1,1,1,1,1] => 15
[3,3,3] => 9
[3,3,2,1] => 8
[3,3,1,1,1] => 12
[3,2,2,2] => 9
[3,2,2,1,1] => 11
[3,2,1,1,1,1] => 15
[3,1,1,1,1,1,1] => 21
[2,2,2,2,1] => 16
[2,2,2,1,1,1] => 18
[2,2,1,1,1,1,1] => 22
[2,1,1,1,1,1,1,1] => 28
[1,1,1,1,1,1,1,1,1] => 36
[10] => 0
[9,1] => 1
[8,2] => 2
[8,1,1] => 3
[7,3] => 1
>>> Load all 1200 entries. <<<[7,2,1] => 3
[7,1,1,1] => 6
[6,4] => 2
[6,3,1] => 5
[6,2,2] => 6
[6,2,1,1] => 7
[6,1,1,1,1] => 10
[5,5] => 5
[5,4,1] => 3
[5,3,2] => 3
[5,3,1,1] => 6
[5,2,2,1] => 7
[5,2,1,1,1] => 10
[5,1,1,1,1,1] => 15
[4,4,2] => 8
[4,4,1,1] => 9
[4,3,3] => 5
[4,3,2,1] => 7
[4,3,1,1,1] => 10
[4,2,2,2] => 12
[4,2,2,1,1] => 13
[4,2,1,1,1,1] => 16
[4,1,1,1,1,1,1] => 21
[3,3,3,1] => 12
[3,3,2,2] => 9
[3,3,2,1,1] => 12
[3,3,1,1,1,1] => 17
[3,2,2,2,1] => 13
[3,2,2,1,1,1] => 16
[3,2,1,1,1,1,1] => 21
[3,1,1,1,1,1,1,1] => 28
[2,2,2,2,2] => 20
[2,2,2,2,1,1] => 21
[2,2,2,1,1,1,1] => 24
[2,2,1,1,1,1,1,1] => 29
[2,1,1,1,1,1,1,1,1] => 36
[1,1,1,1,1,1,1,1,1,1] => 45
[11] => 0
[10,1] => 1
[9,2] => 1
[9,1,1] => 3
[8,3] => 1
[8,2,1] => 4
[8,1,1,1] => 6
[7,4] => 1
[7,3,1] => 3
[7,2,2] => 4
[7,2,1,1] => 6
[7,1,1,1,1] => 10
[6,5] => 1
[6,4,1] => 4
[6,3,2] => 6
[6,3,1,1] => 8
[6,2,2,1] => 9
[6,2,1,1,1] => 11
[6,1,1,1,1,1] => 15
[5,5,1] => 7
[5,4,2] => 4
[5,4,1,1] => 6
[5,3,3] => 5
[5,3,2,1] => 6
[5,3,1,1,1] => 10
[5,2,2,2] => 9
[5,2,2,1,1] => 11
[5,2,1,1,1,1] => 15
[5,1,1,1,1,1,1] => 21
[4,4,3] => 6
[4,4,2,1] => 11
[4,4,1,1,1] => 13
[4,3,3,1] => 8
[4,3,2,2] => 9
[4,3,2,1,1] => 11
[4,3,1,1,1,1] => 15
[4,2,2,2,1] => 16
[4,2,2,1,1,1] => 18
[4,2,1,1,1,1,1] => 22
[4,1,1,1,1,1,1,1] => 28
[3,3,3,2] => 12
[3,3,3,1,1] => 16
[3,3,2,2,1] => 13
[3,3,2,1,1,1] => 17
[3,3,1,1,1,1,1] => 23
[3,2,2,2,2] => 16
[3,2,2,2,1,1] => 18
[3,2,2,1,1,1,1] => 22
[3,2,1,1,1,1,1,1] => 28
[3,1,1,1,1,1,1,1,1] => 36
[2,2,2,2,2,1] => 25
[2,2,2,2,1,1,1] => 27
[2,2,2,1,1,1,1,1] => 31
[2,2,1,1,1,1,1,1,1] => 37
[2,1,1,1,1,1,1,1,1,1] => 45
[1,1,1,1,1,1,1,1,1,1,1] => 55
[12] => 0
[11,1] => 1
[10,2] => 2
[10,1,1] => 3
[9,3] => 3
[9,2,1] => 3
[9,1,1,1] => 6
[8,4] => 4
[8,3,1] => 3
[8,2,2] => 6
[8,2,1,1] => 7
[8,1,1,1,1] => 10
[7,5] => 1
[7,4,1] => 3
[7,3,2] => 3
[7,3,1,1] => 6
[7,2,2,1] => 7
[7,2,1,1,1] => 10
[7,1,1,1,1,1] => 15
[6,6] => 6
[6,5,1] => 3
[6,4,2] => 6
[6,4,1,1] => 7
[6,3,3] => 9
[6,3,2,1] => 9
[6,3,1,1,1] => 12
[6,2,2,2] => 12
[6,2,2,1,1] => 13
[6,2,1,1,1,1] => 16
[6,1,1,1,1,1,1] => 21
[5,5,2] => 7
[5,5,1,1] => 10
[5,4,3] => 3
[5,4,2,1] => 7
[5,4,1,1,1] => 10
[5,3,3,1] => 8
[5,3,2,2] => 7
[5,3,2,1,1] => 10
[5,3,1,1,1,1] => 15
[5,2,2,2,1] => 13
[5,2,2,1,1,1] => 16
[5,2,1,1,1,1,1] => 21
[5,1,1,1,1,1,1,1] => 28
[4,4,4] => 12
[4,4,3,1] => 9
[4,4,2,2] => 14
[4,4,2,1,1] => 15
[4,4,1,1,1,1] => 18
[4,3,3,2] => 9
[4,3,3,1,1] => 12
[4,3,2,2,1] => 13
[4,3,2,1,1,1] => 16
[4,3,1,1,1,1,1] => 21
[4,2,2,2,2] => 20
[4,2,2,2,1,1] => 21
[4,2,2,1,1,1,1] => 24
[4,2,1,1,1,1,1,1] => 29
[4,1,1,1,1,1,1,1,1] => 36
[3,3,3,3] => 18
[3,3,3,2,1] => 16
[3,3,3,1,1,1] => 21
[3,3,2,2,2] => 15
[3,3,2,2,1,1] => 18
[3,3,2,1,1,1,1] => 23
[3,3,1,1,1,1,1,1] => 30
[3,2,2,2,2,1] => 21
[3,2,2,2,1,1,1] => 24
[3,2,2,1,1,1,1,1] => 29
[3,2,1,1,1,1,1,1,1] => 36
[3,1,1,1,1,1,1,1,1,1] => 45
[2,2,2,2,2,2] => 30
[2,2,2,2,2,1,1] => 31
[2,2,2,2,1,1,1,1] => 34
[2,2,2,1,1,1,1,1,1] => 39
[2,2,1,1,1,1,1,1,1,1] => 46
[2,1,1,1,1,1,1,1,1,1,1] => 55
[1,1,1,1,1,1,1,1,1,1,1,1] => 66
[13] => 0
[12,1] => 1
[11,2] => 1
[11,1,1] => 3
[10,3] => 1
[10,2,1] => 4
[10,1,1,1] => 6
[9,4] => 1
[9,3,1] => 5
[9,2,2] => 4
[9,2,1,1] => 6
[9,1,1,1,1] => 10
[8,5] => 1
[8,4,1] => 6
[8,3,2] => 4
[8,3,1,1] => 6
[8,2,2,1] => 9
[8,2,1,1,1] => 11
[8,1,1,1,1,1] => 15
[7,6] => 1
[7,5,1] => 3
[7,4,2] => 4
[7,4,1,1] => 6
[7,3,3] => 5
[7,3,2,1] => 6
[7,3,1,1,1] => 10
[7,2,2,2] => 9
[7,2,2,1,1] => 11
[7,2,1,1,1,1] => 15
[7,1,1,1,1,1,1] => 21
[6,6,1] => 8
[6,5,2] => 4
[6,5,1,1] => 6
[6,4,3] => 6
[6,4,2,1] => 9
[6,4,1,1,1] => 11
[6,3,3,1] => 12
[6,3,2,2] => 11
[6,3,2,1,1] => 13
[6,3,1,1,1,1] => 17
[6,2,2,2,1] => 16
[6,2,2,1,1,1] => 18
[6,2,1,1,1,1,1] => 22
[6,1,1,1,1,1,1,1] => 28
[5,5,3] => 7
[5,5,2,1] => 10
[5,5,1,1,1] => 14
[5,4,4] => 6
[5,4,3,1] => 6
[5,4,2,2] => 9
[5,4,2,1,1] => 11
[5,4,1,1,1,1] => 15
[5,3,3,2] => 8
[5,3,3,1,1] => 12
[5,3,2,2,1] => 11
[5,3,2,1,1,1] => 15
[5,3,1,1,1,1,1] => 21
[5,2,2,2,2] => 16
[5,2,2,2,1,1] => 18
[5,2,2,1,1,1,1] => 22
[5,2,1,1,1,1,1,1] => 28
[5,1,1,1,1,1,1,1,1] => 36
[4,4,4,1] => 15
[4,4,3,2] => 11
[4,4,3,1,1] => 13
[4,4,2,2,1] => 18
[4,4,2,1,1,1] => 20
[4,4,1,1,1,1,1] => 24
[4,3,3,3] => 12
[4,3,3,2,1] => 13
[4,3,3,1,1,1] => 17
[4,3,2,2,2] => 16
[4,3,2,2,1,1] => 18
[4,3,2,1,1,1,1] => 22
[4,3,1,1,1,1,1,1] => 28
[4,2,2,2,2,1] => 25
[4,2,2,2,1,1,1] => 27
[4,2,2,1,1,1,1,1] => 31
[4,2,1,1,1,1,1,1,1] => 37
[4,1,1,1,1,1,1,1,1,1] => 45
[3,3,3,3,1] => 22
[3,3,3,2,2] => 17
[3,3,3,2,1,1] => 21
[3,3,3,1,1,1,1] => 27
[3,3,2,2,2,1] => 20
[3,3,2,2,1,1,1] => 24
[3,3,2,1,1,1,1,1] => 30
[3,3,1,1,1,1,1,1,1] => 38
[3,2,2,2,2,2] => 25
[3,2,2,2,2,1,1] => 27
[3,2,2,2,1,1,1,1] => 31
[3,2,2,1,1,1,1,1,1] => 37
[3,2,1,1,1,1,1,1,1,1] => 45
[3,1,1,1,1,1,1,1,1,1,1] => 55
[2,2,2,2,2,2,1] => 36
[2,2,2,2,2,1,1,1] => 38
[2,2,2,2,1,1,1,1,1] => 42
[2,2,2,1,1,1,1,1,1,1] => 48
[2,2,1,1,1,1,1,1,1,1,1] => 56
[2,1,1,1,1,1,1,1,1,1,1,1] => 66
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 78
[14] => 0
[13,1] => 1
[12,2] => 2
[12,1,1] => 3
[11,3] => 1
[11,2,1] => 3
[11,1,1,1] => 6
[10,4] => 2
[10,3,1] => 3
[10,2,2] => 6
[10,2,1,1] => 7
[10,1,1,1,1] => 10
[9,5] => 1
[9,4,1] => 3
[9,3,2] => 5
[9,3,1,1] => 8
[9,2,2,1] => 7
[9,2,1,1,1] => 10
[9,1,1,1,1,1] => 15
[8,6] => 2
[8,5,1] => 3
[8,4,2] => 8
[8,4,1,1] => 9
[8,3,3] => 5
[8,3,2,1] => 7
[8,3,1,1,1] => 10
[8,2,2,2] => 12
[8,2,2,1,1] => 13
[8,2,1,1,1,1] => 16
[8,1,1,1,1,1,1] => 21
[7,7] => 7
[7,6,1] => 3
[7,5,2] => 3
[7,5,1,1] => 6
[7,4,3] => 3
[7,4,2,1] => 7
[7,4,1,1,1] => 10
[7,3,3,1] => 8
[7,3,2,2] => 7
[7,3,2,1,1] => 10
[7,3,1,1,1,1] => 15
[7,2,2,2,1] => 13
[7,2,2,1,1,1] => 16
[7,2,1,1,1,1,1] => 21
[7,1,1,1,1,1,1,1] => 28
[6,6,2] => 10
[6,6,1,1] => 11
[6,5,3] => 5
[6,5,2,1] => 7
[6,5,1,1,1] => 10
[6,4,4] => 8
[6,4,3,1] => 9
[6,4,2,2] => 12
[6,4,2,1,1] => 13
[6,4,1,1,1,1] => 16
[6,3,3,2] => 13
[6,3,3,1,1] => 16
[6,3,2,2,1] => 15
[6,3,2,1,1,1] => 18
[6,3,1,1,1,1,1] => 23
[6,2,2,2,2] => 20
[6,2,2,2,1,1] => 21
[6,2,2,1,1,1,1] => 24
[6,2,1,1,1,1,1,1] => 29
[6,1,1,1,1,1,1,1,1] => 36
[5,5,4] => 7
[5,5,3,1] => 10
[5,5,2,2] => 11
[5,5,2,1,1] => 14
[5,5,1,1,1,1] => 19
[5,4,4,1] => 9
[5,4,3,2] => 7
[5,4,3,1,1] => 10
[5,4,2,2,1] => 13
[5,4,2,1,1,1] => 16
[5,4,1,1,1,1,1] => 21
[5,3,3,3] => 12
[5,3,3,2,1] => 12
[5,3,3,1,1,1] => 17
[5,3,2,2,2] => 13
[5,3,2,2,1,1] => 16
[5,3,2,1,1,1,1] => 21
[5,3,1,1,1,1,1,1] => 28
[5,2,2,2,2,1] => 21
[5,2,2,2,1,1,1] => 24
[5,2,2,1,1,1,1,1] => 29
[5,2,1,1,1,1,1,1,1] => 36
[5,1,1,1,1,1,1,1,1,1] => 45
[4,4,4,2] => 18
[4,4,4,1,1] => 19
[4,4,3,3] => 11
[4,4,3,2,1] => 15
[4,4,3,1,1,1] => 18
[4,4,2,2,2] => 22
[4,4,2,2,1,1] => 23
[4,4,2,1,1,1,1] => 26
[4,4,1,1,1,1,1,1] => 31
[4,3,3,3,1] => 16
[4,3,3,2,2] => 15
[4,3,3,2,1,1] => 18
[4,3,3,1,1,1,1] => 23
[4,3,2,2,2,1] => 21
[4,3,2,2,1,1,1] => 24
[4,3,2,1,1,1,1,1] => 29
[4,3,1,1,1,1,1,1,1] => 36
[4,2,2,2,2,2] => 30
[4,2,2,2,2,1,1] => 31
[4,2,2,2,1,1,1,1] => 34
[4,2,2,1,1,1,1,1,1] => 39
[4,2,1,1,1,1,1,1,1,1] => 46
[4,1,1,1,1,1,1,1,1,1,1] => 55
[3,3,3,3,2] => 22
[3,3,3,3,1,1] => 27
[3,3,3,2,2,1] => 22
[3,3,3,2,1,1,1] => 27
[3,3,3,1,1,1,1,1] => 34
[3,3,2,2,2,2] => 23
[3,3,2,2,2,1,1] => 26
[3,3,2,2,1,1,1,1] => 31
[3,3,2,1,1,1,1,1,1] => 38
[3,3,1,1,1,1,1,1,1,1] => 47
[3,2,2,2,2,2,1] => 31
[3,2,2,2,2,1,1,1] => 34
[3,2,2,2,1,1,1,1,1] => 39
[3,2,2,1,1,1,1,1,1,1] => 46
[3,2,1,1,1,1,1,1,1,1,1] => 55
[3,1,1,1,1,1,1,1,1,1,1,1] => 66
[2,2,2,2,2,2,2] => 42
[2,2,2,2,2,2,1,1] => 43
[2,2,2,2,2,1,1,1,1] => 46
[2,2,2,2,1,1,1,1,1,1] => 51
[2,2,2,1,1,1,1,1,1,1,1] => 58
[2,2,1,1,1,1,1,1,1,1,1,1] => 67
[2,1,1,1,1,1,1,1,1,1,1,1,1] => 78
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 91
[15] => 0
[14,1] => 1
[13,2] => 1
[13,1,1] => 3
[12,3] => 3
[12,2,1] => 4
[12,1,1,1] => 6
[11,4] => 1
[11,3,1] => 3
[11,2,2] => 4
[11,2,1,1] => 6
[11,1,1,1,1] => 10
[10,5] => 5
[10,4,1] => 4
[10,3,2] => 4
[10,3,1,1] => 6
[10,2,2,1] => 9
[10,2,1,1,1] => 11
[10,1,1,1,1,1] => 15
[9,6] => 3
[9,5,1] => 3
[9,4,2] => 4
[9,4,1,1] => 6
[9,3,3] => 9
[9,3,2,1] => 8
[9,3,1,1,1] => 12
[9,2,2,2] => 9
[9,2,2,1,1] => 11
[9,2,1,1,1,1] => 15
[9,1,1,1,1,1,1] => 21
[8,7] => 1
[8,6,1] => 4
[8,5,2] => 4
[8,5,1,1] => 6
[8,4,3] => 6
[8,4,2,1] => 11
[8,4,1,1,1] => 13
[8,3,3,1] => 8
[8,3,2,2] => 9
[8,3,2,1,1] => 11
[8,3,1,1,1,1] => 15
[8,2,2,2,1] => 16
[8,2,2,1,1,1] => 18
[8,2,1,1,1,1,1] => 22
[8,1,1,1,1,1,1,1] => 28
[7,7,1] => 9
[7,6,2] => 4
[7,6,1,1] => 6
[7,5,3] => 3
[7,5,2,1] => 6
[7,5,1,1,1] => 10
[7,4,4] => 6
[7,4,3,1] => 6
[7,4,2,2] => 9
[7,4,2,1,1] => 11
[7,4,1,1,1,1] => 15
[7,3,3,2] => 8
[7,3,3,1,1] => 12
[7,3,2,2,1] => 11
[7,3,2,1,1,1] => 15
[7,3,1,1,1,1,1] => 21
[7,2,2,2,2] => 16
[7,2,2,2,1,1] => 18
[7,2,2,1,1,1,1] => 22
[7,2,1,1,1,1,1,1] => 28
[7,1,1,1,1,1,1,1,1] => 36
[6,6,3] => 12
[6,6,2,1] => 13
[6,6,1,1,1] => 15
[6,5,4] => 4
[6,5,3,1] => 8
[6,5,2,2] => 9
[6,5,2,1,1] => 11
[6,5,1,1,1,1] => 15
[6,4,4,1] => 11
[6,4,3,2] => 11
[6,4,3,1,1] => 13
[6,4,2,2,1] => 16
[6,4,2,1,1,1] => 18
[6,4,1,1,1,1,1] => 22
[6,3,3,3] => 18
[6,3,3,2,1] => 17
[6,3,3,1,1,1] => 21
[6,3,2,2,2] => 18
[6,3,2,2,1,1] => 20
[6,3,2,1,1,1,1] => 24
[6,3,1,1,1,1,1,1] => 30
[6,2,2,2,2,1] => 25
[6,2,2,2,1,1,1] => 27
[6,2,2,1,1,1,1,1] => 31
[6,2,1,1,1,1,1,1,1] => 37
[6,1,1,1,1,1,1,1,1,1] => 45
[5,5,5] => 15
[5,5,4,1] => 10
[5,5,3,2] => 10
[5,5,3,1,1] => 14
[5,5,2,2,1] => 15
[5,5,2,1,1,1] => 19
[5,5,1,1,1,1,1] => 25
[5,4,4,2] => 11
[5,4,4,1,1] => 13
[5,4,3,3] => 8
[5,4,3,2,1] => 11
[5,4,3,1,1,1] => 15
[5,4,2,2,2] => 16
[5,4,2,2,1,1] => 18
[5,4,2,1,1,1,1] => 22
[5,4,1,1,1,1,1,1] => 28
[5,3,3,3,1] => 16
[5,3,3,2,2] => 13
[5,3,3,2,1,1] => 17
[5,3,3,1,1,1,1] => 23
[5,3,2,2,2,1] => 18
[5,3,2,2,1,1,1] => 22
[5,3,2,1,1,1,1,1] => 28
[5,3,1,1,1,1,1,1,1] => 36
[5,2,2,2,2,2] => 25
[5,2,2,2,2,1,1] => 27
[5,2,2,2,1,1,1,1] => 31
[5,2,2,1,1,1,1,1,1] => 37
[5,2,1,1,1,1,1,1,1,1] => 45
[5,1,1,1,1,1,1,1,1,1,1] => 55
[4,4,4,3] => 15
[4,4,4,2,1] => 22
[4,4,4,1,1,1] => 24
[4,4,3,3,1] => 15
[4,4,3,2,2] => 18
[4,4,3,2,1,1] => 20
[4,4,3,1,1,1,1] => 24
[4,4,2,2,2,1] => 27
[4,4,2,2,1,1,1] => 29
[4,4,2,1,1,1,1,1] => 33
[4,4,1,1,1,1,1,1,1] => 39
[4,3,3,3,2] => 17
[4,3,3,3,1,1] => 21
[4,3,3,2,2,1] => 20
[4,3,3,2,1,1,1] => 24
[4,3,3,1,1,1,1,1] => 30
[4,3,2,2,2,2] => 25
[4,3,2,2,2,1,1] => 27
[4,3,2,2,1,1,1,1] => 31
[4,3,2,1,1,1,1,1,1] => 37
[4,3,1,1,1,1,1,1,1,1] => 45
[4,2,2,2,2,2,1] => 36
[4,2,2,2,2,1,1,1] => 38
[4,2,2,2,1,1,1,1,1] => 42
[4,2,2,1,1,1,1,1,1,1] => 48
[4,2,1,1,1,1,1,1,1,1,1] => 56
[4,1,1,1,1,1,1,1,1,1,1,1] => 66
[3,3,3,3,3] => 30
[3,3,3,3,2,1] => 27
[3,3,3,3,1,1,1] => 33
[3,3,3,2,2,2] => 24
[3,3,3,2,2,1,1] => 28
[3,3,3,2,1,1,1,1] => 34
[3,3,3,1,1,1,1,1,1] => 42
[3,3,2,2,2,2,1] => 29
[3,3,2,2,2,1,1,1] => 33
[3,3,2,2,1,1,1,1,1] => 39
[3,3,2,1,1,1,1,1,1,1] => 47
[3,3,1,1,1,1,1,1,1,1,1] => 57
[3,2,2,2,2,2,2] => 36
[3,2,2,2,2,2,1,1] => 38
[3,2,2,2,2,1,1,1,1] => 42
[3,2,2,2,1,1,1,1,1,1] => 48
[3,2,2,1,1,1,1,1,1,1,1] => 56
[3,2,1,1,1,1,1,1,1,1,1,1] => 66
[3,1,1,1,1,1,1,1,1,1,1,1,1] => 78
[2,2,2,2,2,2,2,1] => 49
[2,2,2,2,2,2,1,1,1] => 51
[2,2,2,2,2,1,1,1,1,1] => 55
[2,2,2,2,1,1,1,1,1,1,1] => 61
[2,2,2,1,1,1,1,1,1,1,1,1] => 69
[2,2,1,1,1,1,1,1,1,1,1,1,1] => 79
[2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 91
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 105
[16] => 0
[15,1] => 1
[14,2] => 2
[14,1,1] => 3
[13,3] => 1
[13,2,1] => 3
[13,1,1,1] => 6
[12,4] => 4
[12,3,1] => 5
[12,2,2] => 6
[12,2,1,1] => 7
[12,1,1,1,1] => 10
[11,5] => 1
[11,4,1] => 3
[11,3,2] => 3
[11,3,1,1] => 6
[11,2,2,1] => 7
[11,2,1,1,1] => 10
[11,1,1,1,1,1] => 15
[10,6] => 2
[10,5,1] => 7
[10,4,2] => 6
[10,4,1,1] => 7
[10,3,3] => 5
[10,3,2,1] => 7
[10,3,1,1,1] => 10
[10,2,2,2] => 12
[10,2,2,1,1] => 13
[10,2,1,1,1,1] => 16
[10,1,1,1,1,1,1] => 21
[9,7] => 1
[9,6,1] => 5
[9,5,2] => 3
[9,5,1,1] => 6
[9,4,3] => 5
[9,4,2,1] => 7
[9,4,1,1,1] => 10
[9,3,3,1] => 12
[9,3,2,2] => 9
[9,3,2,1,1] => 12
[9,3,1,1,1,1] => 17
[9,2,2,2,1] => 13
[9,2,2,1,1,1] => 16
[9,2,1,1,1,1,1] => 21
[9,1,1,1,1,1,1,1] => 28
[8,8] => 8
[8,7,1] => 3
[8,6,2] => 6
[8,6,1,1] => 7
[8,5,3] => 3
[8,5,2,1] => 7
[8,5,1,1,1] => 10
[8,4,4] => 12
[8,4,3,1] => 9
[8,4,2,2] => 14
[8,4,2,1,1] => 15
[8,4,1,1,1,1] => 18
[8,3,3,2] => 9
[8,3,3,1,1] => 12
[8,3,2,2,1] => 13
[8,3,2,1,1,1] => 16
[8,3,1,1,1,1,1] => 21
[8,2,2,2,2] => 20
[8,2,2,2,1,1] => 21
[8,2,2,1,1,1,1] => 24
[8,2,1,1,1,1,1,1] => 29
[8,1,1,1,1,1,1,1,1] => 36
[7,7,2] => 9
[7,7,1,1] => 12
[7,6,3] => 5
[7,6,2,1] => 7
[7,6,1,1,1] => 10
[7,5,4] => 3
[7,5,3,1] => 6
[7,5,2,2] => 7
[7,5,2,1,1] => 10
[7,5,1,1,1,1] => 15
[7,4,4,1] => 9
[7,4,3,2] => 7
[7,4,3,1,1] => 10
[7,4,2,2,1] => 13
[7,4,2,1,1,1] => 16
[7,4,1,1,1,1,1] => 21
[7,3,3,3] => 12
[7,3,3,2,1] => 12
[7,3,3,1,1,1] => 17
[7,3,2,2,2] => 13
[7,3,2,2,1,1] => 16
[7,3,2,1,1,1,1] => 21
[7,3,1,1,1,1,1,1] => 28
[7,2,2,2,2,1] => 21
[7,2,2,2,1,1,1] => 24
[7,2,2,1,1,1,1,1] => 29
[7,2,1,1,1,1,1,1,1] => 36
[7,1,1,1,1,1,1,1,1,1] => 45
[6,6,4] => 10
[6,6,3,1] => 15
[6,6,2,2] => 16
[6,6,2,1,1] => 17
[6,6,1,1,1,1] => 20
[6,5,5] => 7
[6,5,4,1] => 7
[6,5,3,2] => 9
[6,5,3,1,1] => 12
[6,5,2,2,1] => 13
[6,5,2,1,1,1] => 16
[6,5,1,1,1,1,1] => 21
[6,4,4,2] => 14
[6,4,4,1,1] => 15
[6,4,3,3] => 13
[6,4,3,2,1] => 15
[6,4,3,1,1,1] => 18
[6,4,2,2,2] => 20
[6,4,2,2,1,1] => 21
[6,4,2,1,1,1,1] => 24
[6,4,1,1,1,1,1,1] => 29
[6,3,3,3,1] => 22
[6,3,3,2,2] => 19
[6,3,3,2,1,1] => 22
[6,3,3,1,1,1,1] => 27
[6,3,2,2,2,1] => 23
[6,3,2,2,1,1,1] => 26
[6,3,2,1,1,1,1,1] => 31
[6,3,1,1,1,1,1,1,1] => 38
[6,2,2,2,2,2] => 30
[6,2,2,2,2,1,1] => 31
[6,2,2,2,1,1,1,1] => 34
[6,2,2,1,1,1,1,1,1] => 39
[6,2,1,1,1,1,1,1,1,1] => 46
[6,1,1,1,1,1,1,1,1,1,1] => 55
[5,5,5,1] => 18
[5,5,4,2] => 11
[5,5,4,1,1] => 14
[5,5,3,3] => 12
[5,5,3,2,1] => 14
[5,5,3,1,1,1] => 19
[5,5,2,2,2] => 17
[5,5,2,2,1,1] => 20
[5,5,2,1,1,1,1] => 25
[5,5,1,1,1,1,1,1] => 32
[5,4,4,3] => 9
[5,4,4,2,1] => 15
[5,4,4,1,1,1] => 18
[5,4,3,3,1] => 12
[5,4,3,2,2] => 13
[5,4,3,2,1,1] => 16
[5,4,3,1,1,1,1] => 21
[5,4,2,2,2,1] => 21
[5,4,2,2,1,1,1] => 24
[5,4,2,1,1,1,1,1] => 29
[5,4,1,1,1,1,1,1,1] => 36
[5,3,3,3,2] => 16
[5,3,3,3,1,1] => 21
[5,3,3,2,2,1] => 18
[5,3,3,2,1,1,1] => 23
[5,3,3,1,1,1,1,1] => 30
[5,3,2,2,2,2] => 21
[5,3,2,2,2,1,1] => 24
[5,3,2,2,1,1,1,1] => 29
[5,3,2,1,1,1,1,1,1] => 36
[5,3,1,1,1,1,1,1,1,1] => 45
[5,2,2,2,2,2,1] => 31
[5,2,2,2,2,1,1,1] => 34
[5,2,2,2,1,1,1,1,1] => 39
[5,2,2,1,1,1,1,1,1,1] => 46
[5,2,1,1,1,1,1,1,1,1,1] => 55
[5,1,1,1,1,1,1,1,1,1,1,1] => 66
[4,4,4,4] => 24
[4,4,4,3,1] => 19
[4,4,4,2,2] => 26
[4,4,4,2,1,1] => 27
[4,4,4,1,1,1,1] => 30
[4,4,3,3,2] => 17
[4,4,3,3,1,1] => 20
[4,4,3,2,2,1] => 23
[4,4,3,2,1,1,1] => 26
[4,4,3,1,1,1,1,1] => 31
[4,4,2,2,2,2] => 32
[4,4,2,2,2,1,1] => 33
[4,4,2,2,1,1,1,1] => 36
[4,4,2,1,1,1,1,1,1] => 41
[4,4,1,1,1,1,1,1,1,1] => 48
[4,3,3,3,3] => 22
[4,3,3,3,2,1] => 22
[4,3,3,3,1,1,1] => 27
[4,3,3,2,2,2] => 23
[4,3,3,2,2,1,1] => 26
[4,3,3,2,1,1,1,1] => 31
[4,3,3,1,1,1,1,1,1] => 38
[4,3,2,2,2,2,1] => 31
[4,3,2,2,2,1,1,1] => 34
[4,3,2,2,1,1,1,1,1] => 39
[4,3,2,1,1,1,1,1,1,1] => 46
[4,3,1,1,1,1,1,1,1,1,1] => 55
[4,2,2,2,2,2,2] => 42
[4,2,2,2,2,2,1,1] => 43
[4,2,2,2,2,1,1,1,1] => 46
[4,2,2,2,1,1,1,1,1,1] => 51
[4,2,2,1,1,1,1,1,1,1,1] => 58
[4,2,1,1,1,1,1,1,1,1,1,1] => 67
[4,1,1,1,1,1,1,1,1,1,1,1,1] => 78
[3,3,3,3,3,1] => 35
[3,3,3,3,2,2] => 28
[3,3,3,3,2,1,1] => 33
[3,3,3,3,1,1,1,1] => 40
[3,3,3,2,2,2,1] => 30
[3,3,3,2,2,1,1,1] => 35
[3,3,3,2,1,1,1,1,1] => 42
[3,3,3,1,1,1,1,1,1,1] => 51
[3,3,2,2,2,2,2] => 33
[3,3,2,2,2,2,1,1] => 36
[3,3,2,2,2,1,1,1,1] => 41
[3,3,2,2,1,1,1,1,1,1] => 48
[3,3,2,1,1,1,1,1,1,1,1] => 57
[3,3,1,1,1,1,1,1,1,1,1,1] => 68
[3,2,2,2,2,2,2,1] => 43
[3,2,2,2,2,2,1,1,1] => 46
[3,2,2,2,2,1,1,1,1,1] => 51
[3,2,2,2,1,1,1,1,1,1,1] => 58
[3,2,2,1,1,1,1,1,1,1,1,1] => 67
[3,2,1,1,1,1,1,1,1,1,1,1,1] => 78
[3,1,1,1,1,1,1,1,1,1,1,1,1,1] => 91
[2,2,2,2,2,2,2,2] => 56
[2,2,2,2,2,2,2,1,1] => 57
[2,2,2,2,2,2,1,1,1,1] => 60
[2,2,2,2,2,1,1,1,1,1,1] => 65
[2,2,2,2,1,1,1,1,1,1,1,1] => 72
[2,2,2,1,1,1,1,1,1,1,1,1,1] => 81
[2,2,1,1,1,1,1,1,1,1,1,1,1,1] => 92
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 105
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 120
[17] => 0
[16,1] => 1
[15,2] => 1
[15,1,1] => 3
[14,3] => 1
[14,2,1] => 4
[14,1,1,1] => 6
[13,4] => 1
[13,3,1] => 3
[13,2,2] => 4
[13,2,1,1] => 6
[13,1,1,1,1] => 10
[12,5] => 1
[12,4,1] => 6
[12,3,2] => 6
[12,3,1,1] => 8
[12,2,2,1] => 9
[12,2,1,1,1] => 11
[12,1,1,1,1,1] => 15
[11,6] => 1
[11,5,1] => 3
[11,4,2] => 4
[11,4,1,1] => 6
[11,3,3] => 5
[11,3,2,1] => 6
[11,3,1,1,1] => 10
[11,2,2,2] => 9
[11,2,2,1,1] => 11
[11,2,1,1,1,1] => 15
[11,1,1,1,1,1,1] => 21
[10,7] => 1
[10,6,1] => 4
[10,5,2] => 8
[10,5,1,1] => 10
[10,4,3] => 4
[10,4,2,1] => 9
[10,4,1,1,1] => 11
[10,3,3,1] => 8
[10,3,2,2] => 9
[10,3,2,1,1] => 11
[10,3,1,1,1,1] => 15
[10,2,2,2,1] => 16
[10,2,2,1,1,1] => 18
[10,2,1,1,1,1,1] => 22
[10,1,1,1,1,1,1,1] => 28
[9,8] => 1
[9,7,1] => 3
[9,6,2] => 6
[9,6,1,1] => 8
[9,5,3] => 5
[9,5,2,1] => 6
[9,5,1,1,1] => 10
[9,4,4] => 6
[9,4,3,1] => 8
[9,4,2,2] => 9
[9,4,2,1,1] => 11
[9,4,1,1,1,1] => 15
[9,3,3,2] => 12
[9,3,3,1,1] => 16
[9,3,2,2,1] => 13
[9,3,2,1,1,1] => 17
[9,3,1,1,1,1,1] => 23
[9,2,2,2,2] => 16
[9,2,2,2,1,1] => 18
[9,2,2,1,1,1,1] => 22
[9,2,1,1,1,1,1,1] => 28
[9,1,1,1,1,1,1,1,1] => 36
[8,8,1] => 10
[8,7,2] => 4
[8,7,1,1] => 6
[8,6,3] => 6
[8,6,2,1] => 9
[8,6,1,1,1] => 11
[8,5,4] => 6
[8,5,3,1] => 6
[8,5,2,2] => 9
[8,5,2,1,1] => 11
[8,5,1,1,1,1] => 15
[8,4,4,1] => 15
[8,4,3,2] => 11
[8,4,3,1,1] => 13
[8,4,2,2,1] => 18
[8,4,2,1,1,1] => 20
[8,4,1,1,1,1,1] => 24
[8,3,3,3] => 12
[8,3,3,2,1] => 13
[8,3,3,1,1,1] => 17
[8,3,2,2,2] => 16
[8,3,2,2,1,1] => 18
[8,3,2,1,1,1,1] => 22
[8,3,1,1,1,1,1,1] => 28
[8,2,2,2,2,1] => 25
[8,2,2,2,1,1,1] => 27
[8,2,2,1,1,1,1,1] => 31
[8,2,1,1,1,1,1,1,1] => 37
[8,1,1,1,1,1,1,1,1,1] => 45
[7,7,3] => 9
[7,7,2,1] => 12
[7,7,1,1,1] => 16
[7,6,4] => 4
[7,6,3,1] => 8
[7,6,2,2] => 9
[7,6,2,1,1] => 11
[7,6,1,1,1,1] => 15
[7,5,5] => 7
[7,5,4,1] => 6
[7,5,3,2] => 6
[7,5,3,1,1] => 10
[7,5,2,2,1] => 11
[7,5,2,1,1,1] => 15
[7,5,1,1,1,1,1] => 21
[7,4,4,2] => 11
[7,4,4,1,1] => 13
[7,4,3,3] => 8
[7,4,3,2,1] => 11
[7,4,3,1,1,1] => 15
[7,4,2,2,2] => 16
[7,4,2,2,1,1] => 18
[7,4,2,1,1,1,1] => 22
[7,4,1,1,1,1,1,1] => 28
[7,3,3,3,1] => 16
[7,3,3,2,2] => 13
[7,3,3,2,1,1] => 17
[7,3,3,1,1,1,1] => 23
[7,3,2,2,2,1] => 18
[7,3,2,2,1,1,1] => 22
[7,3,2,1,1,1,1,1] => 28
[7,3,1,1,1,1,1,1,1] => 36
[7,2,2,2,2,2] => 25
[7,2,2,2,2,1,1] => 27
[7,2,2,2,1,1,1,1] => 31
[7,2,2,1,1,1,1,1,1] => 37
[7,2,1,1,1,1,1,1,1,1] => 45
[7,1,1,1,1,1,1,1,1,1,1] => 55
[6,6,5] => 8
[6,6,4,1] => 13
[6,6,3,2] => 17
[6,6,3,1,1] => 19
[6,6,2,2,1] => 20
[6,6,2,1,1,1] => 22
[6,6,1,1,1,1,1] => 26
[6,5,5,1] => 10
[6,5,4,2] => 9
[6,5,4,1,1] => 11
[6,5,3,3] => 12
[6,5,3,2,1] => 13
[6,5,3,1,1,1] => 17
[6,5,2,2,2] => 16
[6,5,2,2,1,1] => 18
[6,5,2,1,1,1,1] => 22
[6,5,1,1,1,1,1,1] => 28
[6,4,4,3] => 13
[6,4,4,2,1] => 18
[6,4,4,1,1,1] => 20
[6,4,3,3,1] => 17
[6,4,3,2,2] => 18
[6,4,3,2,1,1] => 20
[6,4,3,1,1,1,1] => 24
[6,4,2,2,2,1] => 25
[6,4,2,2,1,1,1] => 27
[6,4,2,1,1,1,1,1] => 31
[6,4,1,1,1,1,1,1,1] => 37
[6,3,3,3,2] => 23
[6,3,3,3,1,1] => 27
[6,3,3,2,2,1] => 24
[6,3,3,2,1,1,1] => 28
[6,3,3,1,1,1,1,1] => 34
[6,3,2,2,2,2] => 27
[6,3,2,2,2,1,1] => 29
[6,3,2,2,1,1,1,1] => 33
[6,3,2,1,1,1,1,1,1] => 39
[6,3,1,1,1,1,1,1,1,1] => 47
[6,2,2,2,2,2,1] => 36
[6,2,2,2,2,1,1,1] => 38
[6,2,2,2,1,1,1,1,1] => 42
[6,2,2,1,1,1,1,1,1,1] => 48
[6,2,1,1,1,1,1,1,1,1,1] => 56
[6,1,1,1,1,1,1,1,1,1,1,1] => 66
[5,5,5,2] => 18
[5,5,5,1,1] => 22
[5,5,4,3] => 10
[5,5,4,2,1] => 15
[5,5,4,1,1,1] => 19
[5,5,3,3,1] => 16
[5,5,3,2,2] => 15
[5,5,3,2,1,1] => 19
[5,5,3,1,1,1,1] => 25
[5,5,2,2,2,1] => 22
[5,5,2,2,1,1,1] => 26
[5,5,2,1,1,1,1,1] => 32
[5,5,1,1,1,1,1,1,1] => 40
[5,4,4,4] => 15
[5,4,4,3,1] => 13
[5,4,4,2,2] => 18
[5,4,4,2,1,1] => 20
[5,4,4,1,1,1,1] => 24
[5,4,3,3,2] => 13
[5,4,3,3,1,1] => 17
[5,4,3,2,2,1] => 18
[5,4,3,2,1,1,1] => 22
[5,4,3,1,1,1,1,1] => 28
[5,4,2,2,2,2] => 25
[5,4,2,2,2,1,1] => 27
[5,4,2,2,1,1,1,1] => 31
[5,4,2,1,1,1,1,1,1] => 37
[5,4,1,1,1,1,1,1,1,1] => 45
[5,3,3,3,3] => 22
[5,3,3,3,2,1] => 21
[5,3,3,3,1,1,1] => 27
[5,3,3,2,2,2] => 20
[5,3,3,2,2,1,1] => 24
[5,3,3,2,1,1,1,1] => 30
[5,3,3,1,1,1,1,1,1] => 38
[5,3,2,2,2,2,1] => 27
[5,3,2,2,2,1,1,1] => 31
[5,3,2,2,1,1,1,1,1] => 37
[5,3,2,1,1,1,1,1,1,1] => 45
[5,3,1,1,1,1,1,1,1,1,1] => 55
[5,2,2,2,2,2,2] => 36
[5,2,2,2,2,2,1,1] => 38
[5,2,2,2,2,1,1,1,1] => 42
[5,2,2,2,1,1,1,1,1,1] => 48
[5,2,2,1,1,1,1,1,1,1,1] => 56
[5,2,1,1,1,1,1,1,1,1,1,1] => 66
[5,1,1,1,1,1,1,1,1,1,1,1,1] => 78
[4,4,4,4,1] => 28
[4,4,4,3,2] => 22
[4,4,4,3,1,1] => 24
[4,4,4,2,2,1] => 31
[4,4,4,2,1,1,1] => 33
[4,4,4,1,1,1,1,1] => 37
[4,4,3,3,3] => 19
[4,4,3,3,2,1] => 22
[4,4,3,3,1,1,1] => 26
[4,4,3,2,2,2] => 27
[4,4,3,2,2,1,1] => 29
[4,4,3,2,1,1,1,1] => 33
[4,4,3,1,1,1,1,1,1] => 39
[4,4,2,2,2,2,1] => 38
[4,4,2,2,2,1,1,1] => 40
[4,4,2,2,1,1,1,1,1] => 44
[4,4,2,1,1,1,1,1,1,1] => 50
[4,4,1,1,1,1,1,1,1,1,1] => 58
[4,3,3,3,3,1] => 27
[4,3,3,3,2,2] => 24
[4,3,3,3,2,1,1] => 28
[4,3,3,3,1,1,1,1] => 34
[4,3,3,2,2,2,1] => 29
[4,3,3,2,2,1,1,1] => 33
[4,3,3,2,1,1,1,1,1] => 39
[4,3,3,1,1,1,1,1,1,1] => 47
[4,3,2,2,2,2,2] => 36
[4,3,2,2,2,2,1,1] => 38
[4,3,2,2,2,1,1,1,1] => 42
[4,3,2,2,1,1,1,1,1,1] => 48
[4,3,2,1,1,1,1,1,1,1,1] => 56
[4,3,1,1,1,1,1,1,1,1,1,1] => 66
[4,2,2,2,2,2,2,1] => 49
[4,2,2,2,2,2,1,1,1] => 51
[4,2,2,2,2,1,1,1,1,1] => 55
[4,2,2,2,1,1,1,1,1,1,1] => 61
[4,2,2,1,1,1,1,1,1,1,1,1] => 69
[4,2,1,1,1,1,1,1,1,1,1,1,1] => 79
[4,1,1,1,1,1,1,1,1,1,1,1,1,1] => 91
[3,3,3,3,3,2] => 35
[3,3,3,3,3,1,1] => 41
[3,3,3,3,2,2,1] => 34
[3,3,3,3,2,1,1,1] => 40
[3,3,3,3,1,1,1,1,1] => 48
[3,3,3,2,2,2,2] => 33
[3,3,3,2,2,2,1,1] => 37
[3,3,3,2,2,1,1,1,1] => 43
[3,3,3,2,1,1,1,1,1,1] => 51
[3,3,3,1,1,1,1,1,1,1,1] => 61
[3,3,2,2,2,2,2,1] => 40
[3,3,2,2,2,2,1,1,1] => 44
[3,3,2,2,2,1,1,1,1,1] => 50
[3,3,2,2,1,1,1,1,1,1,1] => 58
[3,3,2,1,1,1,1,1,1,1,1,1] => 68
[3,3,1,1,1,1,1,1,1,1,1,1,1] => 80
[3,2,2,2,2,2,2,2] => 49
[3,2,2,2,2,2,2,1,1] => 51
[3,2,2,2,2,2,1,1,1,1] => 55
[3,2,2,2,2,1,1,1,1,1,1] => 61
[3,2,2,2,1,1,1,1,1,1,1,1] => 69
[3,2,2,1,1,1,1,1,1,1,1,1,1] => 79
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,0,1 1,1,1,1,0,0,1 1,2,0,1,1,0,1,0,0,0,1 1,1,1,3,0,0,2,1,0,0,1,0,0,0,0,1 1,3,0,1,2,1,2,0,0,1,1,1,0,0,0,1,0,0,0,0,0,1 1,2,1,3,1,1,2,2,1,0,2,0,1,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 1 + q + q^{3}$
$F_{4} = 1 + q + q^{2} + q^{3} + q^{6}$
$F_{5} = 1 + 2\ q + q^{3} + q^{4} + q^{6} + q^{10}$
$F_{6} = 1 + q + q^{2} + 3\ q^{3} + 2\ q^{6} + q^{7} + q^{10} + q^{15}$
$F_{7} = 1 + 3\ q + q^{3} + 2\ q^{4} + q^{5} + 2\ q^{6} + q^{9} + q^{10} + q^{11} + q^{15} + q^{21}$
$F_{8} = 1 + 2\ q + q^{2} + 3\ q^{3} + q^{4} + q^{5} + 2\ q^{6} + 2\ q^{7} + q^{8} + 2\ q^{10} + q^{12} + q^{13} + q^{15} + q^{16} + q^{21} + q^{28}$
$F_{9} = 1 + 3\ q + 3\ q^{3} + 3\ q^{4} + 4\ q^{6} + q^{8} + 3\ q^{9} + q^{10} + 2\ q^{11} + q^{12} + 2\ q^{15} + q^{16} + q^{18} + q^{21} + q^{22} + q^{28} + q^{36}$
$F_{10} = 1 + 2\ q + 2\ q^{2} + 4\ q^{3} + 3\ q^{5} + 3\ q^{6} + 3\ q^{7} + q^{8} + 2\ q^{9} + 3\ q^{10} + 3\ q^{12} + 2\ q^{13} + q^{15} + 2\ q^{16} + q^{17} + q^{20} + 3\ q^{21} + q^{24} + q^{28} + q^{29} + q^{36} + q^{45}$
$F_{11} = 1 + 5\ q + 2\ q^{3} + 4\ q^{4} + q^{5} + 6\ q^{6} + q^{7} + 2\ q^{8} + 3\ q^{9} + 2\ q^{10} + 4\ q^{11} + q^{12} + 2\ q^{13} + 3\ q^{15} + 3\ q^{16} + q^{17} + 2\ q^{18} + q^{21} + 2\ q^{22} + q^{23} + q^{25} + q^{27} + 2\ q^{28} + q^{31} + q^{36} + q^{37} + q^{45} + q^{55}$
$F_{12} = 1 + 2\ q + q^{2} + 8\ q^{3} + q^{4} + 5\ q^{6} + 6\ q^{7} + q^{8} + 4\ q^{9} + 5\ q^{10} + 4\ q^{12} + 3\ q^{13} + q^{14} + 4\ q^{15} + 4\ q^{16} + 3\ q^{18} + q^{20} + 6\ q^{21} + q^{23} + 2\ q^{24} + q^{28} + 2\ q^{29} + 2\ q^{30} + q^{31} + q^{34} + 2\ q^{36} + q^{39} + q^{45} + q^{46} + q^{55} + q^{66}$
$F_{13} = 1 + 6\ q + 2\ q^{3} + 5\ q^{4} + 2\ q^{5} + 10\ q^{6} + q^{7} + 2\ q^{8} + 4\ q^{9} + 3\ q^{10} + 7\ q^{11} + 3\ q^{12} + 3\ q^{13} + q^{14} + 5\ q^{15} + 3\ q^{16} + 3\ q^{17} + 4\ q^{18} + 2\ q^{20} + 3\ q^{21} + 4\ q^{22} + 2\ q^{24} + 2\ q^{25} + 3\ q^{27} + 3\ q^{28} + q^{30} + 2\ q^{31} + 2\ q^{36} + 2\ q^{37} + 2\ q^{38} + q^{42} + 2\ q^{45} + q^{48} + q^{55} + q^{56} + q^{66} + q^{78}$
$F_{14} = 1 + 3\ q + 3\ q^{2} + 8\ q^{3} + 3\ q^{5} + 3\ q^{6} + 9\ q^{7} + 4\ q^{8} + 3\ q^{9} + 9\ q^{10} + 3\ q^{11} + 4\ q^{12} + 6\ q^{13} + q^{14} + 5\ q^{15} + 7\ q^{16} + q^{17} + 4\ q^{18} + 2\ q^{19} + q^{20} + 7\ q^{21} + 3\ q^{22} + 4\ q^{23} + 3\ q^{24} + 2\ q^{26} + 2\ q^{27} + 2\ q^{28} + 3\ q^{29} + q^{30} + 4\ q^{31} + 3\ q^{34} + 3\ q^{36} + q^{38} + 2\ q^{39} + q^{42} + q^{43} + q^{45} + 3\ q^{46} + q^{47} + q^{51} + 2\ q^{55} + q^{58} + q^{66} + q^{67} + q^{78} + q^{91}$
$F_{15} = 1 + 4\ q + 6\ q^{3} + 9\ q^{4} + q^{5} + 10\ q^{6} + 5\ q^{8} + 7\ q^{9} + 4\ q^{10} + 11\ q^{11} + 3\ q^{12} + 5\ q^{13} + q^{14} + 12\ q^{15} + 5\ q^{16} + 3\ q^{17} + 8\ q^{18} + q^{19} + 3\ q^{20} + 4\ q^{21} + 6\ q^{22} + q^{23} + 5\ q^{24} + 4\ q^{25} + 5\ q^{27} + 5\ q^{28} + 2\ q^{29} + 3\ q^{30} + 3\ q^{31} + 3\ q^{33} + q^{34} + 4\ q^{36} + 3\ q^{37} + 2\ q^{38} + 2\ q^{39} + 3\ q^{42} + 3\ q^{45} + q^{47} + 2\ q^{48} + q^{49} + q^{51} + 2\ q^{55} + 2\ q^{56} + q^{57} + q^{61} + 2\ q^{66} + q^{69} + q^{78} + q^{79} + q^{91} + q^{105}$
$F_{16} = 1 + 4\ q + 2\ q^{2} + 8\ q^{3} + q^{4} + 5\ q^{5} + 7\ q^{6} + 13\ q^{7} + q^{8} + 7\ q^{9} + 9\ q^{10} + q^{11} + 11\ q^{12} + 8\ q^{13} + 4\ q^{14} + 7\ q^{15} + 9\ q^{16} + 5\ q^{17} + 5\ q^{18} + 3\ q^{19} + 5\ q^{20} + 13\ q^{21} + 4\ q^{22} + 4\ q^{23} + 6\ q^{24} + q^{25} + 4\ q^{26} + 3\ q^{27} + 3\ q^{28} + 5\ q^{29} + 4\ q^{30} + 6\ q^{31} + 2\ q^{32} + 3\ q^{33} + 3\ q^{34} + 2\ q^{35} + 6\ q^{36} + 2\ q^{38} + 3\ q^{39} + q^{40} + 2\ q^{41} + 2\ q^{42} + 2\ q^{43} + 2\ q^{45} + 5\ q^{46} + 2\ q^{48} + 3\ q^{51} + 3\ q^{55} + q^{56} + 2\ q^{57} + 2\ q^{58} + q^{60} + q^{65} + q^{66} + 2\ q^{67} + q^{68} + q^{72} + 2\ q^{78} + q^{81} + q^{91} + q^{92} + q^{105} + q^{120}$
Description
The sum of the greatest common divisors of all pairs of parts.
Code
def statistic(mu):
return sum(gcd(mu[i], mu[j]) for i in range(1, len(mu)) for j in range(i))
Created
Jan 11, 2025 at 17:59 by Martin Rubey
Updated
Jan 11, 2025 at 17:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!