*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001964

-----------------------------------------------------------------------------
Collection: Posets

-----------------------------------------------------------------------------
Description: The interval resolution global dimension of a poset.

This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.

-----------------------------------------------------------------------------
References: [1]   Aoki, T., Escolar, E. G., Tada, S. Summand-injectivity of interval covers and monotonicity of interval resolution global dimensions [[arXiv:2308.14979]]
[2]   [[https://github.com/xHoukakun/Interval-Resolution-Global-Dimension/tree/main]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

([],1)                                    => 0
([],2)                                    => 0
([(0,1)],2)                               => 0
([],3)                                    => 0
([(0,1),(0,2)],3)                         => 0
([(0,2),(2,1)],3)                         => 0
([(0,2),(1,2)],3)                         => 0
([],4)                                    => 0
([(0,1),(0,2),(0,3)],4)                   => 1
([(0,2),(0,3),(3,1)],4)                   => 0
([(0,1),(0,2),(1,3),(2,3)],4)             => 0
([(1,2),(2,3)],4)                         => 0
([(0,3),(3,1),(3,2)],4)                   => 1
([(1,3),(2,3)],4)                         => 0
([(0,3),(1,3),(3,2)],4)                   => 1
([(0,3),(1,3),(2,3)],4)                   => 1
([(0,3),(1,2),(1,3)],4)                   => 0
([(0,2),(0,3),(1,2),(1,3)],4)             => 2
([(0,3),(2,1),(3,2)],4)                   => 0
([(0,3),(1,2),(2,3)],4)                   => 0
([],5)                                    => 0
([(0,1),(0,2),(0,3),(0,4)],5)             => 2
([(0,2),(0,3),(0,4),(4,1)],5)             => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)       => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(4,1),(4,2)],5)             => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)       => 1
([(0,3),(0,4),(3,2),(4,1)],5)             => 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)       => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(2,3),(3,4)],5)                         => 0
([(0,4),(4,1),(4,2),(4,3)],5)             => 2
([(2,4),(3,4)],5)                         => 0
([(1,4),(2,4),(4,3)],5)                   => 1
([(0,4),(1,4),(4,2),(4,3)],5)             => 2
([(0,4),(1,4),(2,4),(4,3)],5)             => 2
([(0,4),(1,4),(2,4),(3,4)],5)             => 2
([(0,4),(1,4),(2,3)],5)                   => 0
([(0,4),(1,3),(2,3),(2,4)],5)             => 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)       => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,4),(1,4),(2,3),(4,2)],5)             => 1
([(0,4),(1,3),(2,3),(3,4)],5)             => 1
([(0,4),(1,4),(2,3),(2,4)],5)             => 1
([(0,4),(1,4),(2,3),(3,4)],5)             => 1
([(0,4),(1,2),(1,4),(2,3)],5)             => 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)       => 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)       => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 2
([(0,4),(1,2),(1,4),(4,3)],5)             => 1
([(0,4),(1,2),(1,3),(1,4)],5)             => 1
([(0,2),(0,4),(3,1),(4,3)],5)             => 0
([(0,4),(1,2),(1,3),(3,4)],5)             => 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)       => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)       => 1
([(0,3),(0,4),(1,2),(1,4)],5)             => 0
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)       => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)       => 2
([(0,3),(1,2),(1,4),(3,4)],5)             => 0
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)       => 2
([(1,4),(3,2),(4,3)],5)                   => 0
([(0,3),(3,4),(4,1),(4,2)],5)             => 1
([(1,4),(2,3),(3,4)],5)                   => 0
([(0,4),(1,2),(2,4),(4,3)],5)             => 1
([(0,3),(1,4),(4,2)],5)                   => 0
([(0,4),(3,2),(4,1),(4,3)],5)             => 1
([(0,4),(1,2),(2,3),(2,4)],5)             => 1
([(0,4),(2,3),(3,1),(4,2)],5)             => 0
([(0,3),(1,2),(2,4),(3,4)],5)             => 0
([(0,4),(1,2),(2,3),(3,4)],5)             => 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)       => 1
([],6)                                    => 0
([(3,4),(4,5)],6)                         => 0
([(2,3),(3,5),(5,4)],6)                   => 0
([(3,5),(4,5)],6)                         => 0
([(2,5),(3,5),(5,4)],6)                   => 1
([(0,5),(1,5),(2,5),(3,5),(5,4)],6)       => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)       => 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)       => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)       => 2
([(1,5),(2,5),(3,4)],6)                   => 0
([(1,5),(2,4),(3,4),(3,5)],6)             => 0
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(5,3)],6)             => 1
([(1,5),(2,4),(3,4),(4,5)],6)             => 1
([(0,5),(1,4),(2,4),(4,5),(5,3)],6)       => 2
([(0,5),(1,5),(2,3),(5,4)],6)             => 1
([(1,5),(2,5),(3,4),(4,5)],6)             => 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)       => 2
([(0,5),(1,5),(2,3),(3,4)],6)             => 0
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)       => 1
([(0,4),(1,4),(2,3),(3,5),(4,5)],6)       => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)       => 1
([(0,5),(1,5),(2,4),(3,4)],6)             => 0
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)       => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)       => 2
([(2,5),(3,4),(4,5)],6)                   => 0
([(1,5),(2,3),(3,5),(5,4)],6)             => 1
([(1,3),(2,4),(4,5)],6)                   => 0
([(1,5),(3,4),(4,2),(5,3)],6)             => 0
([(1,4),(2,3),(3,5),(4,5)],6)             => 0
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)       => 1
([(0,5),(1,4),(4,2),(5,3)],6)             => 0
([(1,5),(2,3),(3,4),(4,5)],6)             => 0
([(0,5),(1,4),(2,5),(4,2),(5,3)],6)       => 1
([(0,4),(1,4),(1,5),(2,3),(3,5)],6)       => 0
([(0,5),(1,3),(4,2),(5,4)],6)             => 0
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)       => 0
([(0,5),(1,3),(2,4),(4,5)],6)             => 0
([(0,5),(1,4),(2,3),(3,4),(3,5)],6)       => 1
([(0,5),(1,3),(3,5),(4,2),(5,4)],6)       => 1
([(0,5),(1,4),(2,3),(3,5),(5,4)],6)       => 1
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)       => 0
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)       => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)       => 1

-----------------------------------------------------------------------------
Created: Mar 07, 2025 at 13:26 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 07, 2025 at 15:43 by Jannek Müller