Identifier
-
Mp00013:
Binary trees
—to poset⟶
Posets
St001964: Posets ⟶ ℤ
Values
[.,.] => ([],1) => 0
[.,[.,.]] => ([(0,1)],2) => 0
[[.,.],.] => ([(0,1)],2) => 0
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 0
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => 0
[[.,.],[.,.]] => ([(0,2),(1,2)],3) => 0
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => 0
[[[.,.],.],.] => ([(0,2),(2,1)],3) => 0
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => 1
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 0
[[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => 0
[[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => 0
[[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 0
[[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 0
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => 1
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[[.,.],[.,.]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[.,.],[.,[.,.]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[.,[[.,.],[[.,.],.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[.,[[.,[.,.]],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[.,[[[.,.],.],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[[.,.],[.,.]],.]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,.],[.,[.,[.,.]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[.,[[.,.],.]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[.,[[.,.],[[.,[.,.]],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[[[.,.],.],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[.,.]],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[.,[[.,[.,.]],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[.,[[[.,.],.],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[.,[[[.,.],.],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[.,[[.,[.,[.,.]]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[[.,.],.]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[.,[[[.,[.,.]],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[[[.,.],.],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[[.,.],[.,.]]],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[[.,.],[.,[.,.]]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[[[.,.],[[.,.],.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[[[.,[.,.]],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[.,[[[[.,.],.],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!