Identifier
-
Mp00061:
Permutations
—to increasing tree⟶
Binary trees
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
St001964: Posets ⟶ ℤ
Values
[1] => [.,.] => [[]] => ([(0,1)],2) => 0
[1,2] => [.,[.,.]] => [[[]]] => ([(0,2),(2,1)],3) => 0
[2,1] => [[.,.],.] => [[],[]] => ([(0,2),(1,2)],3) => 0
[1,2,3] => [.,[.,[.,.]]] => [[[[]]]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,2] => [.,[[.,.],.]] => [[[],[]]] => ([(0,3),(1,3),(3,2)],4) => 1
[2,1,3] => [[.,.],[.,.]] => [[],[[]]] => ([(0,3),(1,2),(2,3)],4) => 0
[2,3,1] => [[.,[.,.]],.] => [[[]],[]] => ([(0,3),(1,2),(2,3)],4) => 0
[3,1,2] => [[.,.],[.,.]] => [[],[[]]] => ([(0,3),(1,2),(2,3)],4) => 0
[3,2,1] => [[[.,.],.],.] => [[],[],[]] => ([(0,3),(1,3),(2,3)],4) => 1
[1,2,3,4] => [.,[.,[.,[.,.]]]] => [[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,4,3] => [.,[.,[[.,.],.]]] => [[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[1,3,2,4] => [.,[[.,.],[.,.]]] => [[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[1,3,4,2] => [.,[[.,[.,.]],.]] => [[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[1,4,2,3] => [.,[[.,.],[.,.]]] => [[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 1
[1,4,3,2] => [.,[[[.,.],.],.]] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => 2
[2,1,3,4] => [[.,.],[.,[.,.]]] => [[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[2,1,4,3] => [[.,.],[[.,.],.]] => [[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[2,3,1,4] => [[.,[.,.]],[.,.]] => [[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[2,3,4,1] => [[.,[.,[.,.]]],.] => [[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[2,4,1,3] => [[.,[.,.]],[.,.]] => [[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[2,4,3,1] => [[.,[[.,.],.]],.] => [[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[3,1,2,4] => [[.,.],[.,[.,.]]] => [[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[3,1,4,2] => [[.,.],[[.,.],.]] => [[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[3,2,1,4] => [[[.,.],.],[.,.]] => [[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[3,2,4,1] => [[[.,.],[.,.]],.] => [[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[3,4,1,2] => [[.,[.,.]],[.,.]] => [[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
[3,4,2,1] => [[[.,[.,.]],.],.] => [[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[4,1,2,3] => [[.,.],[.,[.,.]]] => [[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
[4,1,3,2] => [[.,.],[[.,.],.]] => [[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 1
[4,2,1,3] => [[[.,.],.],[.,.]] => [[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[4,2,3,1] => [[[.,.],[.,.]],.] => [[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[4,3,1,2] => [[[.,.],.],[.,.]] => [[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[4,3,2,1] => [[[[.,.],.],.],.] => [[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => [[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => [[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]] => [[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]] => [[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]] => [[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]] => [[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]] => [[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]] => [[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]] => [[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]] => [[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]] => [[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]] => [[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]] => [[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[1,5,2,4,3] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 2
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]] => [[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]] => [[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 3
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]] => [[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]] => [[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]] => [[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,1,4,5,3] => [[.,.],[[.,[.,.]],.]] => [[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]] => [[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]] => [[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.] => [[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]] => [[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.] => [[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.] => [[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]] => [[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.] => [[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[2,5,3,1,4] => [[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.] => [[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[2,5,4,1,3] => [[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]] => [[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
[3,1,2,5,4] => [[.,.],[.,[[.,.],.]]] => [[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 1
[3,1,4,2,5] => [[.,.],[[.,.],[.,.]]] => [[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[3,1,4,5,2] => [[.,.],[[.,[.,.]],.]] => [[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[3,1,5,2,4] => [[.,.],[[.,.],[.,.]]] => [[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]] => [[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,2,4,1,5] => [[[.,.],[.,.]],[.,.]] => [[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,2,4,5,1] => [[[.,.],[.,[.,.]]],.] => [[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
[3,2,5,1,4] => [[[.,.],[.,.]],[.,.]] => [[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,2,5,4,1] => [[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,4,2,1,5] => [[[.,[.,.]],.],[.,.]] => [[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,4,2,5,1] => [[[.,[.,.]],[.,.]],.] => [[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]] => [[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.] => [[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,5,2,1,4] => [[[.,[.,.]],.],[.,.]] => [[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,5,2,4,1] => [[[.,[.,.]],[.,.]],.] => [[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[3,5,4,1,2] => [[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 1
>>> Load all 148 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
to ordered tree: left child = left brother
Description
Return an ordered tree of size $n+1$ by the following recursive rule:
- if $x$ is the left child of $y$, $x$ becomes the left brother of $y$,
- if $x$ is the right child of $y$, $x$ becomes the last child of $y$.
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!