Identifier
- St001966: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>4
[1,1,0,0]=>2
[1,0,1,0,1,0]=>7
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>2
[1,0,1,0,1,0,1,0]=>10
[1,0,1,0,1,1,0,0]=>7
[1,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,0,1,0]=>7
[1,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>13
[1,0,1,0,1,0,1,1,0,0]=>10
[1,0,1,0,1,1,0,0,1,0]=>10
[1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0]=>10
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,0,1,0]=>7
[1,1,0,1,0,1,0,1,0,0]=>7
[1,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>7
[1,1,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0,1,0]=>16
[1,0,1,0,1,0,1,0,1,1,0,0]=>13
[1,0,1,0,1,0,1,1,0,0,1,0]=>13
[1,0,1,0,1,0,1,1,0,1,0,0]=>13
[1,0,1,0,1,0,1,1,1,0,0,0]=>10
[1,0,1,0,1,1,0,0,1,0,1,0]=>13
[1,0,1,0,1,1,0,0,1,1,0,0]=>10
[1,0,1,0,1,1,0,1,0,0,1,0]=>13
[1,0,1,0,1,1,0,1,0,1,0,0]=>10
[1,0,1,0,1,1,0,1,1,0,0,0]=>10
[1,0,1,0,1,1,1,0,0,0,1,0]=>10
[1,0,1,0,1,1,1,0,0,1,0,0]=>10
[1,0,1,0,1,1,1,0,1,0,0,0]=>10
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>13
[1,0,1,1,0,0,1,0,1,1,0,0]=>10
[1,0,1,1,0,0,1,1,0,0,1,0]=>10
[1,0,1,1,0,0,1,1,0,1,0,0]=>10
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>13
[1,0,1,1,0,1,0,0,1,1,0,0]=>10
[1,0,1,1,0,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,1,0,0]=>10
[1,0,1,1,0,1,0,1,1,0,0,0]=>7
[1,0,1,1,0,1,1,0,0,0,1,0]=>10
[1,0,1,1,0,1,1,0,0,1,0,0]=>10
[1,0,1,1,0,1,1,0,1,0,0,0]=>7
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>10
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>10
[1,0,1,1,1,0,0,1,0,1,0,0]=>7
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>10
[1,0,1,1,1,0,1,0,0,1,0,0]=>7
[1,0,1,1,1,0,1,0,1,0,0,0]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0,1,0]=>13
[1,1,0,0,1,0,1,0,1,1,0,0]=>10
[1,1,0,0,1,0,1,1,0,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,1,0,0]=>10
[1,1,0,0,1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,1,0,0,1,0,1,0]=>10
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>10
[1,1,0,0,1,1,0,1,0,1,0,0]=>7
[1,1,0,0,1,1,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0,1,0]=>13
[1,1,0,1,0,0,1,0,1,1,0,0]=>10
[1,1,0,1,0,0,1,1,0,0,1,0]=>10
[1,1,0,1,0,0,1,1,0,1,0,0]=>10
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,1,0,0,1,1,0,0]=>7
[1,1,0,1,0,1,0,1,0,0,1,0]=>10
[1,1,0,1,0,1,0,1,0,1,0,0]=>8
[1,1,0,1,0,1,0,1,1,0,0,0]=>7
[1,1,0,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0,1,0]=>10
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>10
[1,1,0,1,1,0,0,1,0,1,0,0]=>7
[1,1,0,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>7
[1,1,0,1,1,0,1,1,0,0,0,0]=>5
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>7
[1,1,0,1,1,1,0,1,0,0,0,0]=>5
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>10
[1,1,1,0,0,0,1,0,1,1,0,0]=>7
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,0]=>10
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>7
[1,1,1,0,0,1,0,1,0,1,0,0]=>7
[1,1,1,0,0,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,1,0,0,0]=>5
[1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,0]=>10
[1,1,1,0,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,1,0,0,1,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,1,0,0]=>7
[1,1,1,0,1,0,0,1,1,0,0,0]=>5
[1,1,1,0,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>7
[1,1,1,0,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,0,1,1,0,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>7
[1,1,1,0,1,1,0,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,1,0,0,0,0]=>5
[1,1,1,0,1,1,1,0,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0,1,0]=>7
[1,1,1,1,0,0,0,0,1,1,0,0]=>4
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>5
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,1,0,0,1,0,0,0]=>5
[1,1,1,1,0,1,0,1,0,0,0,0]=>5
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>4
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>4
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half the global dimension of the stable Auslander algebra of a sincere Nakayama algebra (with associated Dyck path).
Code
LoadPackage("qpa"); statistics := function(z) local R, RR, W, i, T, TT, nn, WW, l; R := BuildSequences(z); R := reduce(R); RR := Filtered(R, x -> gldim(x) < 33 and Minimum(x) >= z); W := []; for i in RR do Append(W,[translatesinceretodyck([z,i])]); od; T := BuildSequences(z); T := reduce(T); TT := Filtered(T, x -> gldim(x) < 33 and Minimum(x) >= z); nn := Size(TT); WW := []; for l in [1..nn] do Append(WW, [[W[l], GorensteinDimensionOfstableAusalgnak([NakayamaAlgebra(TT[l], GF(3))])/2]]); od; return WW; end; BuildSequences := function(n) local all, range, len, new, seq, i, sel; all := [[]]; # start with empty range := [2 .. 2*n]; # valid entries for len in [1 .. n - 1] do # build sequences in increasing length new := []; for seq in all do # extend with all possible values based on condition if len = 1 then sel := [2 .. n + 1]; # otherwise last entry is too large else sel := Filtered(range, x -> x >= seq[len - 1] - 1 and x >= seq[1] and x <= seq[1] + n - len + 1); fi; for i in sel do Add(new, Concatenation(seq, [i])); od; od; all := new; od; # Can we add the last entry while remaining valid? return List(all, x -> Concatenation(x, [x[1] + 1])); end; rot := function(x) local n, a; a := x[1]; n := Length(x); x := x{[2 .. n]}; Add(x, a); return x; end; canon := function(x) local x0, x_min; x0 := ShallowCopy(x); x_min := ShallowCopy(x); while true do x := rot(x); if x = x0 then break; fi; if x < x_min then x_min := ShallowCopy(x); fi; od; return x_min; end; reduce := L -> Set(List(L, canon)); DeclareOperation("gldim", [IsList]); InstallMethod(gldim, "for a representation of a quiver", [IsList], 0, function(L) local list, n, i, j, f, temp, temp2, temp3, u; list := L; n := Size(L); f := function(x, y) local c, z; c := (x + y) mod n; if c = 0 then c := n; fi; z := (x + 1) mod n; if z = 0 then z := n; fi; return([c, list[z] - y]); end; temp2 := []; for i in [0 .. n - 1] do Append(temp2, [[i, 1]]); od; temp := []; for i in [0 .. n - 1] do u := temp2[i + 1]; Append(temp, [[u]]); od; for i in [0 .. n - 1] do j := 1; while j < 2*n + 3 do Append(temp[i + 1], [f(temp[i + 1][j][1], temp[i + 1][j][2])]); j := j + 1; od; od; temp3 := []; for i in [1 .. n] do temp2 := []; for j in [1 .. (2*n + 3)] do if temp[i][j][2] = 0 then Append(temp2, [j]); fi; od; if Size(temp2) > 0 then u := Minimum(temp2); Append(temp3, [u]); else temp3 := "inf"; break; fi; od; if IsString(temp3) = false then temp3 := (Maximum(temp3)) - 2; fi; return(temp3); end); DeclareOperation("translatesinceretodyck", [IsList]); InstallMethod(translatesinceretodyck, "for a representation of a quiver", [IsList], 0, function(L) local z, U, UU; z := L[1]; U := L[2]; Remove(U, 1); UU := U - (z - 1); Append(UU, [1]); return(UU); end); DeclareOperation("injdimstablehomofnonprojindecnak", [IsList]); InstallMethod(injdimstablehomofnonprojindecnak, "for a representation of a quiver", [IsList], 0, function(LIST) local A, M, n, P, N; A := LIST[1]; M := LIST[2]; n := Size(SimpleModules(A)); P := Source(ProjectiveCover(M)); N := NthSyzygy(M, 1); if InjDimensionOfModule(N, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n), InjDimensionOfModule(P, 2*n)) then return(3*InjDimensionOfModule(N, 2*n) - 1); else if InjDimensionOfModule(P, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n), InjDimensionOfModule(N, 2*n)) then return(3*InjDimensionOfModule(P, 2*n)); else return(3*InjDimensionOfModule(M, 2*n) + 1); fi; fi; end); DeclareOperation("domdimstablehomofnonprojindecnak", [IsList]); InstallMethod(domdimstablehomofnonprojindecnak, "for a representation of a quiver", [IsList], 0, function(LIST) local A, M, n, P, N; A := LIST[1]; M := LIST[2]; n := Size(SimpleModules(A)); P := Source(ProjectiveCover(M)); N := NthSyzygy(M, 1); if DominantDimensionOfModule(N, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n), DominantDimensionOfModule(P, 2*n)) then return(3*DominantDimensionOfModule(N, 2*n)); else if DominantDimensionOfModule(P, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n), DominantDimensionOfModule(N, 2*n)) then return(3*DominantDimensionOfModule(P, 2*n) + 1); else return(3*DominantDimensionOfModule(M, 2*n) + 2); fi; fi; end); DeclareOperation("NthRadical", [IsList]); InstallMethod(NthRadical, "for a representation of a quiver", [IsList], 0, function(LIST) local M, n, f, N, i, h; M := LIST[1]; n := LIST[2]; if n = 0 then return(IdentityMapping(M)); else f := RadicalOfModuleInclusion(M); N := Source(f); for i in [1 .. n - 1] do h := RadicalOfModuleInclusion(N); N := Source(h); f := \*(h, f); od; return(f); fi; end); DeclareOperation("ARQuiverNak", [IsList]); InstallMethod(ARQuiverNak, "for a representation of a quiver", [IsList], 0, function(LIST) local A, i, j, injA, UU; A := LIST[1]; injA := IndecInjectiveModules(A); UU := []; for i in injA do for j in [0 .. Dimension(i) - 1] do Append(UU, [Source(NthRadical([i, j]))]); od; od; return(UU); end); DeclareOperation("GorensteinDimensionOfstableAusalgnak", [IsList]); InstallMethod(GorensteinDimensionOfstableAusalgnak, "for a representation of a quiver", [IsList], 0, function(LIST) local A, LL, LL2, W, i; A := LIST[1]; LL := ARQuiverNak([A]); LL2 := Filtered(LL, x -> IsProjectiveModule(x) = false and DominantDimensionOfModule(DualOfModule(x), 33) = 0); W := []; for i in LL2 do Append(W, [injdimstablehomofnonprojindecnak([A, i])]); od; return(Maximum(W)); end);
Created
Jul 25, 2025 at 16:33 by Martin Rubey
Updated
Jul 25, 2025 at 16:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!