edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>4 [1,1,0,0]=>2 [1,0,1,0,1,0]=>7 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>4 [1,1,1,0,0,0]=>2 [1,0,1,0,1,0,1,0]=>10 [1,0,1,0,1,1,0,0]=>7 [1,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,1,0,0]=>7 [1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,0,1,0]=>7 [1,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,0,1,0]=>7 [1,1,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,0,0]=>2 [1,0,1,0,1,0,1,0,1,0]=>13 [1,0,1,0,1,0,1,1,0,0]=>10 [1,0,1,0,1,1,0,0,1,0]=>10 [1,0,1,0,1,1,0,1,0,0]=>10 [1,0,1,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,0,1,0,1,0]=>10 [1,0,1,1,0,0,1,1,0,0]=>7 [1,0,1,1,0,1,0,0,1,0]=>10 [1,0,1,1,0,1,0,1,0,0]=>7 [1,0,1,1,0,1,1,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0]=>7 [1,0,1,1,1,0,0,1,0,0]=>7 [1,0,1,1,1,0,1,0,0,0]=>7 [1,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0]=>10 [1,1,0,0,1,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,0,1,0]=>7 [1,1,0,0,1,1,0,1,0,0]=>7 [1,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,0,1,0,1,0]=>10 [1,1,0,1,0,0,1,1,0,0]=>7 [1,1,0,1,0,1,0,0,1,0]=>7 [1,1,0,1,0,1,0,1,0,0]=>7 [1,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,1,0,0,1,0,0]=>7 [1,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,0,1,0]=>7 [1,1,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>7 [1,1,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>2 [1,0,1,0,1,0,1,0,1,0,1,0]=>16 [1,0,1,0,1,0,1,0,1,1,0,0]=>13 [1,0,1,0,1,0,1,1,0,0,1,0]=>13 [1,0,1,0,1,0,1,1,0,1,0,0]=>13 [1,0,1,0,1,0,1,1,1,0,0,0]=>10 [1,0,1,0,1,1,0,0,1,0,1,0]=>13 [1,0,1,0,1,1,0,0,1,1,0,0]=>10 [1,0,1,0,1,1,0,1,0,0,1,0]=>13 [1,0,1,0,1,1,0,1,0,1,0,0]=>10 [1,0,1,0,1,1,0,1,1,0,0,0]=>10 [1,0,1,0,1,1,1,0,0,0,1,0]=>10 [1,0,1,0,1,1,1,0,0,1,0,0]=>10 [1,0,1,0,1,1,1,0,1,0,0,0]=>10 [1,0,1,0,1,1,1,1,0,0,0,0]=>7 [1,0,1,1,0,0,1,0,1,0,1,0]=>13 [1,0,1,1,0,0,1,0,1,1,0,0]=>10 [1,0,1,1,0,0,1,1,0,0,1,0]=>10 [1,0,1,1,0,0,1,1,0,1,0,0]=>10 [1,0,1,1,0,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,1,0,0,1,0,1,0]=>13 [1,0,1,1,0,1,0,0,1,1,0,0]=>10 [1,0,1,1,0,1,0,1,0,0,1,0]=>10 [1,0,1,1,0,1,0,1,0,1,0,0]=>10 [1,0,1,1,0,1,0,1,1,0,0,0]=>7 [1,0,1,1,0,1,1,0,0,0,1,0]=>10 [1,0,1,1,0,1,1,0,0,1,0,0]=>10 [1,0,1,1,0,1,1,0,1,0,0,0]=>7 [1,0,1,1,0,1,1,1,0,0,0,0]=>7 [1,0,1,1,1,0,0,0,1,0,1,0]=>10 [1,0,1,1,1,0,0,0,1,1,0,0]=>7 [1,0,1,1,1,0,0,1,0,0,1,0]=>10 [1,0,1,1,1,0,0,1,0,1,0,0]=>7 [1,0,1,1,1,0,0,1,1,0,0,0]=>7 [1,0,1,1,1,0,1,0,0,0,1,0]=>10 [1,0,1,1,1,0,1,0,0,1,0,0]=>7 [1,0,1,1,1,0,1,0,1,0,0,0]=>7 [1,0,1,1,1,0,1,1,0,0,0,0]=>7 [1,0,1,1,1,1,0,0,0,0,1,0]=>7 [1,0,1,1,1,1,0,0,0,1,0,0]=>7 [1,0,1,1,1,1,0,0,1,0,0,0]=>7 [1,0,1,1,1,1,0,1,0,0,0,0]=>7 [1,0,1,1,1,1,1,0,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0,1,0]=>13 [1,1,0,0,1,0,1,0,1,1,0,0]=>10 [1,1,0,0,1,0,1,1,0,0,1,0]=>10 [1,1,0,0,1,0,1,1,0,1,0,0]=>10 [1,1,0,0,1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,1,0,0,1,0,1,0]=>10 [1,1,0,0,1,1,0,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,1,0,0,1,0]=>10 [1,1,0,0,1,1,0,1,0,1,0,0]=>7 [1,1,0,0,1,1,0,1,1,0,0,0]=>7 [1,1,0,0,1,1,1,0,0,0,1,0]=>7 [1,1,0,0,1,1,1,0,0,1,0,0]=>7 [1,1,0,0,1,1,1,0,1,0,0,0]=>7 [1,1,0,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,1,0,0,1,0,1,0,1,0]=>13 [1,1,0,1,0,0,1,0,1,1,0,0]=>10 [1,1,0,1,0,0,1,1,0,0,1,0]=>10 [1,1,0,1,0,0,1,1,0,1,0,0]=>10 [1,1,0,1,0,0,1,1,1,0,0,0]=>7 [1,1,0,1,0,1,0,0,1,0,1,0]=>10 [1,1,0,1,0,1,0,0,1,1,0,0]=>7 [1,1,0,1,0,1,0,1,0,0,1,0]=>10 [1,1,0,1,0,1,0,1,0,1,0,0]=>8 [1,1,0,1,0,1,0,1,1,0,0,0]=>7 [1,1,0,1,0,1,1,0,0,0,1,0]=>7 [1,1,0,1,0,1,1,0,0,1,0,0]=>7 [1,1,0,1,0,1,1,0,1,0,0,0]=>7 [1,1,0,1,0,1,1,1,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0,1,0]=>10 [1,1,0,1,1,0,0,0,1,1,0,0]=>7 [1,1,0,1,1,0,0,1,0,0,1,0]=>10 [1,1,0,1,1,0,0,1,0,1,0,0]=>7 [1,1,0,1,1,0,0,1,1,0,0,0]=>7 [1,1,0,1,1,0,1,0,0,0,1,0]=>7 [1,1,0,1,1,0,1,0,0,1,0,0]=>7 [1,1,0,1,1,0,1,0,1,0,0,0]=>7 [1,1,0,1,1,0,1,1,0,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0,1,0]=>7 [1,1,0,1,1,1,0,0,0,1,0,0]=>7 [1,1,0,1,1,1,0,0,1,0,0,0]=>7 [1,1,0,1,1,1,0,1,0,0,0,0]=>5 [1,1,0,1,1,1,1,0,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0,1,0]=>10 [1,1,1,0,0,0,1,0,1,1,0,0]=>7 [1,1,1,0,0,0,1,1,0,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,1,0,0]=>7 [1,1,1,0,0,0,1,1,1,0,0,0]=>4 [1,1,1,0,0,1,0,0,1,0,1,0]=>10 [1,1,1,0,0,1,0,0,1,1,0,0]=>7 [1,1,1,0,0,1,0,1,0,0,1,0]=>7 [1,1,1,0,0,1,0,1,0,1,0,0]=>7 [1,1,1,0,0,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,1,1,0,0,0,1,0]=>7 [1,1,1,0,0,1,1,0,0,1,0,0]=>7 [1,1,1,0,0,1,1,0,1,0,0,0]=>5 [1,1,1,0,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0,1,0]=>10 [1,1,1,0,1,0,0,0,1,1,0,0]=>7 [1,1,1,0,1,0,0,1,0,0,1,0]=>7 [1,1,1,0,1,0,0,1,0,1,0,0]=>7 [1,1,1,0,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,1,0,0,0,1,0]=>7 [1,1,1,0,1,0,1,0,0,1,0,0]=>7 [1,1,1,0,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,0,1,1,0,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0,1,0]=>7 [1,1,1,0,1,1,0,0,0,1,0,0]=>7 [1,1,1,0,1,1,0,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,1,0,0,0,0]=>5 [1,1,1,0,1,1,1,0,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0,1,0]=>7 [1,1,1,1,0,0,0,0,1,1,0,0]=>4 [1,1,1,1,0,0,0,1,0,0,1,0]=>7 [1,1,1,1,0,0,0,1,0,1,0,0]=>5 [1,1,1,1,0,0,0,1,1,0,0,0]=>4 [1,1,1,1,0,0,1,0,0,0,1,0]=>7 [1,1,1,1,0,0,1,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,1,0,0,0]=>5 [1,1,1,1,0,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0,1,0]=>7 [1,1,1,1,0,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,1,0,0,0,0]=>5 [1,1,1,1,0,1,1,0,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0,1,0]=>4 [1,1,1,1,1,0,0,0,0,1,0,0]=>4 [1,1,1,1,1,0,0,0,1,0,0,0]=>4 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>4 [1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Half the global dimension of the stable Auslander algebra of a sincere Nakayama algebra (with associated Dyck path).
Code
LoadPackage("qpa");

statistics := function(z)
    local R, RR, W, i, T, TT, nn, WW, l;
    R := BuildSequences(z);
    R := reduce(R);
    RR := Filtered(R, x -> gldim(x) < 33 and Minimum(x) >= z);
    W := [];
    for i in RR do 
        Append(W,[translatesinceretodyck([z,i])]);
    od;
    T := BuildSequences(z);
    T := reduce(T);
    TT := Filtered(T, x -> gldim(x) < 33 and Minimum(x) >= z);
    nn := Size(TT);
    WW := [];
    for l in [1..nn] do
        Append(WW, [[W[l],
                     GorensteinDimensionOfstableAusalgnak([NakayamaAlgebra(TT[l], GF(3))])/2]]);
    od;
    return WW;
end;

BuildSequences := function(n)
    local all, range, len, new, seq, i, sel;
    all := [[]];  # start with empty
    range := [2 .. 2*n];  # valid entries
    for len in [1 .. n - 1] do  # build sequences in increasing length
        new := [];
        for seq in all do
            # extend with all possible values based on condition
            if len = 1 then
                sel := [2 .. n + 1];  # otherwise last entry is too large
            else
                sel := Filtered(range, x -> x >= seq[len - 1] - 1
                                       and x >= seq[1]
                                       and x <= seq[1] + n - len + 1);
            fi;
            for i in sel do
                Add(new, Concatenation(seq, [i]));
            od;
        od;
        all := new;
    od;
    # Can we add the last entry while remaining valid?
    return List(all, x -> Concatenation(x, [x[1] + 1]));
end;

rot := function(x)
    local n, a;
    a := x[1];
    n := Length(x);
    x := x{[2 .. n]};
    Add(x, a);
    return x;
end;

canon := function(x)
    local x0, x_min;
    x0 := ShallowCopy(x);
    x_min := ShallowCopy(x);
    while true do
        x := rot(x);
        if x = x0 then
            break;
        fi;
        if x < x_min then
            x_min := ShallowCopy(x);
        fi;
    od;
    return x_min;
end;

reduce := L -> Set(List(L, canon));

DeclareOperation("gldim", [IsList]);

InstallMethod(gldim,
              "for a representation of a quiver",
              [IsList],
              0,
              function(L)
                  local list, n, i, j, f, temp, temp2, temp3, u;

                  list := L;
                  n := Size(L);
                  f := function(x, y)
                      local c, z;
                      c := (x + y) mod n;
                      if c = 0 then
                          c := n;
                      fi;
                      z := (x + 1) mod n;
                      if z = 0 then
                          z := n;
                      fi;
                      return([c, list[z] - y]);
                  end;
                  temp2 := [];
                  for i in [0 .. n - 1] do
                      Append(temp2, [[i, 1]]);
                  od;
                  temp := [];
                  for i in [0 .. n - 1] do
                      u := temp2[i + 1];
                      Append(temp, [[u]]);
                  od;
                  for i in [0 .. n - 1] do
                      j := 1;
                      while j < 2*n + 3 do
                          Append(temp[i + 1],
                                 [f(temp[i + 1][j][1], temp[i + 1][j][2])]);
                          j := j + 1;
                      od;
                  od;
                  temp3 := [];
                  for i in [1 .. n] do
                      temp2 := [];
                      for j in [1 .. (2*n + 3)] do
                          if temp[i][j][2] = 0 then
                              Append(temp2, [j]);
                          fi;
                      od;
                      if Size(temp2) > 0 then
                          u := Minimum(temp2);
                          Append(temp3, [u]);
                      else
                          temp3 := "inf";
                          break;
                      fi;
                  od;
                  if IsString(temp3) = false then
                      temp3 := (Maximum(temp3)) - 2;
                  fi;
                  return(temp3);
              end);

DeclareOperation("translatesinceretodyck", [IsList]);

InstallMethod(translatesinceretodyck,
              "for a representation of a quiver",
              [IsList],
              0,
              function(L)
                  local z, U, UU;

                  z := L[1];
                  U := L[2];
                  Remove(U, 1);
                  UU := U - (z - 1);
                  Append(UU, [1]);
                  return(UU);
              end);

DeclareOperation("injdimstablehomofnonprojindecnak", [IsList]);

InstallMethod(injdimstablehomofnonprojindecnak,
              "for a representation of a quiver",
              [IsList],
              0,
              function(LIST)
                  local A, M, n, P, N;

                  A := LIST[1];
                  M := LIST[2];
                  n := Size(SimpleModules(A));
                  P := Source(ProjectiveCover(M));
                  N := NthSyzygy(M, 1);
                  if InjDimensionOfModule(N, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n),
                                                            InjDimensionOfModule(P, 2*n))
                  then return(3*InjDimensionOfModule(N, 2*n) - 1);
                  else if InjDimensionOfModule(P, 2*n) <= Minimum(InjDimensionOfModule(M, 2*n),
                                                                 InjDimensionOfModule(N, 2*n))
                       then return(3*InjDimensionOfModule(P, 2*n));
                       else return(3*InjDimensionOfModule(M, 2*n) + 1);
                       fi;
                  fi;
              end);

DeclareOperation("domdimstablehomofnonprojindecnak", [IsList]);

InstallMethod(domdimstablehomofnonprojindecnak,
              "for a representation of a quiver",
              [IsList],
              0,
              function(LIST)
                  local A, M, n, P, N;

                  A := LIST[1];
                  M := LIST[2];
                  n := Size(SimpleModules(A));
                  P := Source(ProjectiveCover(M));
                  N := NthSyzygy(M, 1);
                  if DominantDimensionOfModule(N, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n),
                                                                 DominantDimensionOfModule(P, 2*n))
                  then return(3*DominantDimensionOfModule(N, 2*n));
                  else if DominantDimensionOfModule(P, 2*n) <= Minimum(DominantDimensionOfModule(M, 2*n),
                                                                      DominantDimensionOfModule(N, 2*n))
                       then return(3*DominantDimensionOfModule(P, 2*n) + 1);
                       else return(3*DominantDimensionOfModule(M, 2*n) + 2);
                       fi;
                  fi;
              end);

DeclareOperation("NthRadical", [IsList]);

InstallMethod(NthRadical,
              "for a representation of a quiver",
              [IsList],
              0,
              function(LIST)

                  local M, n, f, N, i, h;

                  M := LIST[1];
                  n := LIST[2];

                  if n = 0 then
                      return(IdentityMapping(M));
                  else
                      f := RadicalOfModuleInclusion(M);
                      N := Source(f);

                      for i in [1 .. n - 1] do
                          h := RadicalOfModuleInclusion(N);
                          N := Source(h);
                          f := \*(h, f);
                      od;
                      return(f);
                  fi;
              end);

DeclareOperation("ARQuiverNak", [IsList]);

InstallMethod(ARQuiverNak,
              "for a representation of a quiver",
              [IsList],
              0,
              function(LIST)
                  local A, i, j, injA, UU;

                  A := LIST[1];
                  injA := IndecInjectiveModules(A);
                  UU := [];
                  for i in injA do
                      for j in [0 .. Dimension(i) - 1] do
                          Append(UU, [Source(NthRadical([i, j]))]);
                      od;
                  od;
                  return(UU);
              end);

DeclareOperation("GorensteinDimensionOfstableAusalgnak", [IsList]);

InstallMethod(GorensteinDimensionOfstableAusalgnak,
              "for a representation of a quiver",
              [IsList],
              0,
              function(LIST)

                  local A, LL, LL2, W, i;

                  A := LIST[1];
                  LL := ARQuiverNak([A]);
                  LL2 := Filtered(LL, x -> IsProjectiveModule(x) = false
                                      and DominantDimensionOfModule(DualOfModule(x), 33) = 0);
                  W := [];
                  for i in LL2 do
                      Append(W, [injdimstablehomofnonprojindecnak([A, i])]);
                  od;
                  return(Maximum(W));
              end);

Created
Jul 25, 2025 at 16:33 by Martin Rubey
Updated
Jul 25, 2025 at 16:33 by Martin Rubey