Identifier
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Images
[1] => [1,0] => [1,1,0,0] => [2,1]
[1,1] => [1,0,1,0] => [1,1,0,1,0,0] => [2,3,1]
[2] => [1,1,0,0] => [1,1,1,0,0,0] => [3,2,1]
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1]
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,4,3,1]
[2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,2,4,1]
[3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,3,2,1]
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1]
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,4,1]
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1]
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,4,3,1]
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1]
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,2,5,4,1]
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,3,2,5,1]
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1]
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1]
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,5,1]
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,4,6,1]
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,5,4,1]
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,3,5,6,1]
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,3,6,5,1]
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,4,3,6,1]
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,5,4,3,1]
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,2,4,5,6,1]
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,2,4,6,5,1]
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,2,5,4,6,1]
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,2,6,5,4,1]
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,3,2,5,6,1]
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,3,2,6,5,1]
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,4,3,2,6,1]
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1]
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,1]
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,5,7,6,1]
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [2,3,4,6,5,7,1]
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [2,3,4,7,6,5,1]
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [2,3,5,4,6,7,1]
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [2,3,5,4,7,6,1]
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [2,3,6,5,4,7,1]
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [2,3,7,6,5,4,1]
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,1]
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [2,4,3,5,7,6,1]
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [2,4,3,6,5,7,1]
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [2,4,3,7,6,5,1]
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [2,5,4,3,6,7,1]
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [2,5,4,3,7,6,1]
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [2,6,5,4,3,7,1]
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [2,7,6,5,4,3,1]
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,1]
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [3,2,4,5,7,6,1]
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [3,2,4,6,5,7,1]
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [3,2,4,7,6,5,1]
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [3,2,5,4,6,7,1]
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [3,2,5,4,7,6,1]
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [3,2,6,5,4,7,1]
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [3,2,7,6,5,4,1]
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [4,3,2,5,6,7,1]
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [4,3,2,5,7,6,1]
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => [4,3,2,6,5,7,1]
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [4,3,2,7,6,5,1]
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [5,4,3,2,6,7,1]
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [5,4,3,2,7,6,1]
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [6,5,4,3,2,7,1]
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [7,6,5,4,3,2,1]
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,7,8,1]
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,5,6,8,7,1]
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0] => [2,3,4,5,7,6,8,1]
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0] => [2,3,4,5,8,7,6,1]
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0] => [2,3,4,6,5,7,8,1]
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0] => [2,3,4,6,5,8,7,1]
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0] => [2,3,4,7,6,5,8,1]
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0] => [2,3,4,8,7,6,5,1]
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0] => [2,3,5,4,6,7,8,1]
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0] => [2,3,5,4,6,8,7,1]
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0] => [2,3,5,4,7,6,8,1]
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0] => [2,3,5,4,8,7,6,1]
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0] => [2,3,6,5,4,7,8,1]
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0] => [2,3,6,5,4,8,7,1]
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0] => [2,3,7,6,5,4,8,1]
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0] => [2,3,8,7,6,5,4,1]
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0] => [2,4,3,5,6,7,8,1]
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,4,3,5,6,8,7,1]
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0] => [2,4,3,5,7,6,8,1]
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0] => [2,4,3,5,8,7,6,1]
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0] => [2,4,3,6,5,7,8,1]
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0] => [2,4,3,6,5,8,7,1]
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0] => [2,4,3,7,6,5,8,1]
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0] => [2,4,3,8,7,6,5,1]
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0] => [2,5,4,3,6,7,8,1]
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0] => [2,5,4,3,6,8,7,1]
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0] => [2,5,4,3,7,6,8,1]
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0] => [2,5,4,3,8,7,6,1]
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0] => [2,6,5,4,3,7,8,1]
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0] => [2,6,5,4,3,8,7,1]
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0] => [2,7,6,5,4,3,8,1]
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,8,7,6,5,4,3,1]
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [3,2,4,5,6,7,8,1]
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0] => [3,2,4,5,6,8,7,1]
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0] => [3,2,4,5,7,6,8,1]
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,0] => [3,2,4,5,8,7,6,1]
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0] => [3,2,4,6,5,7,8,1]
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0] => [3,2,4,6,5,8,7,1]
>>> Load all 282 entries. <<<Map
bounce path
Description
The bounce path determined by an integer composition.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
searching the database
Sorry, this map was not found in the database.