Identifier
Mp00184: Integer compositions to threshold graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Images
[1] => ([],1) => [1] => [1]
[1,1] => ([(0,1)],2) => [1,1] => [2]
[2] => ([],2) => [2] => [1,1]
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => [3]
[1,2] => ([(1,2)],3) => [2,1] => [2,1]
[2,1] => ([(0,2),(1,2)],3) => [2,1] => [2,1]
[3] => ([],3) => [3] => [1,1,1]
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4]
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1]
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1]
[1,3] => ([(2,3)],4) => [3,1] => [2,1,1]
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1]
[2,2] => ([(1,3),(2,3)],4) => [3,1] => [2,1,1]
[3,1] => ([(0,3),(1,3),(2,3)],4) => [3,1] => [2,1,1]
[4] => ([],4) => [4] => [1,1,1,1]
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5]
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1]
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1]
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1]
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[1,4] => ([(3,4)],5) => [4,1] => [2,1,1,1]
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1]
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[2,3] => ([(2,4),(3,4)],5) => [4,1] => [2,1,1,1]
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1]
[3,2] => ([(1,4),(2,4),(3,4)],5) => [4,1] => [2,1,1,1]
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [2,1,1,1]
[5] => ([],5) => [5] => [1,1,1,1,1]
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6]
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1]
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1]
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1]
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1]
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[1,5] => ([(4,5)],6) => [5,1] => [2,1,1,1,1]
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1]
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[2,4] => ([(3,5),(4,5)],6) => [5,1] => [2,1,1,1,1]
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1]
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[3,3] => ([(2,5),(3,5),(4,5)],6) => [5,1] => [2,1,1,1,1]
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1]
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [2,1,1,1,1]
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [2,1,1,1,1]
[6] => ([],6) => [6] => [1,1,1,1,1,1]
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,1,1] => [7]
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[1,6] => ([(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1]
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
>>> Load all 127 entries. <<<
[2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[2,5] => ([(4,6),(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [5,1,1]
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[3,4] => ([(3,6),(4,6),(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [4,1,1,1]
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [3,1,1,1,1]
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => [2,1,1,1,1,1]
[7] => ([],7) => [7] => [1,1,1,1,1,1,1]
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
conjugate
Description
The conjugate of a composition.
The conjugate of a composition $C$ is defined as the complement (Mp00039complement) of the reversal (Mp00038reverse) of $C$.
Equivalently, the ribbon shape corresponding to the conjugate of $C$ is the conjugate of the ribbon shape of $C$.