Identifier
Mp00314: Integer compositions Foata bijectionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00154: Graphs core Graphs
Images
[1] => [1] => ([],1) => ([],1)
[1,1] => [1,1] => ([(0,1)],2) => ([(0,1)],2)
[2] => [2] => ([],2) => ([],1)
[1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3)
[1,2] => [1,2] => ([(1,2)],3) => ([(0,1)],2)
[2,1] => [2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2)
[3] => [3] => ([],3) => ([],1)
[1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3)
[1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3)
[1,3] => [1,3] => ([(2,3)],4) => ([(0,1)],2)
[2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3)
[2,2] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2)
[3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2)
[4] => [4] => ([],4) => ([],1)
[1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[1,1,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[1,2,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[1,4] => [1,4] => ([(3,4)],5) => ([(0,1)],2)
[2,1,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[2,3] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2)
[3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3)
[3,2] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1)],2)
[4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2)
[5] => [5] => ([],5) => ([],1)
[1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[1,1,1,1,2] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[1,1,1,2,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[1,1,1,3] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,2,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[1,1,2,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,3,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[1,2,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,2,2,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[1,3,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[1,3,2] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[1,5] => [1,5] => ([(4,5)],6) => ([(0,1)],2)
[2,1,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
[2,1,1,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[2,1,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[2,1,3] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[2,2,1,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[2,4] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2)
[3,1,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1)],2)
[4,1,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3)
[4,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2)
[5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2)
[6] => [6] => ([],6) => ([],1)
Map
Foata bijection
Description
The Foata bijection for compositions.
The Foata bijection $\phi$ is a bijection on the set of words whose letters are positive integers. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
  • If $w_{i+1} \geq v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} \geq v_k$.
  • If $w_{i+1} < v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} < v_k$.
In either case, place a vertical line at the start of the word as well. Now, within each block between vertical lines, cyclically shift the entries one place to the right.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
  • $1$
  • $|1|4 \to 14$
  • $|14|2 \to 412$
  • $|4|1|2|5 \to 4125$
  • $|4|125|3 \to 45123.$
In total, this gives $\phi([1,4,2,5,3]) = [4,5,1,2,3]$.
This bijection sends the major index St000769The major index of a composition regarded as a word. to the number of inversions St000766The number of inversions of an integer composition..
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].