Identifier
Mp00039:
Integer compositions
—complement⟶
Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Images
[1] => [1] => [[1],[]] => ([],1)
[1,1] => [2] => [[2],[]] => ([(0,1)],2)
[2] => [1,1] => [[1,1],[]] => ([(0,1)],2)
[1,1,1] => [3] => [[3],[]] => ([(0,2),(2,1)],3)
[1,2] => [2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3)
[2,1] => [1,2] => [[2,1],[]] => ([(0,1),(0,2)],3)
[3] => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3)
[1,1,1,1] => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4)
[1,1,2] => [3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4)
[1,2,1] => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4)
[1,3] => [2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4)
[2,1,1] => [1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4)
[2,2] => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4)
[3,1] => [1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4)
[4] => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4)
[1,1,1,1,1] => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5)
[1,1,1,2] => [4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5)
[1,1,2,1] => [3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5)
[1,1,3] => [3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5)
[1,2,1,1] => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5)
[1,2,2] => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5)
[1,3,1] => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5)
[1,4] => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5)
[2,1,1,1] => [1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5)
[2,1,2] => [1,3,1] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5)
[2,2,1] => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5)
[2,3] => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5)
[3,1,1] => [1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5)
[3,2] => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5)
[4,1] => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5)
[5] => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5)
[1,1,1,1,1,1] => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
[1,1,1,1,2] => [5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
[1,1,1,2,1] => [4,2] => [[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
[1,1,1,3] => [4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
[1,1,2,1,1] => [3,3] => [[5,3],[2]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
[1,1,2,2] => [3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
[1,1,3,1] => [3,1,2] => [[4,3,3],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
[1,1,4] => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
[1,2,1,1,1] => [2,4] => [[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
[1,2,1,2] => [2,3,1] => [[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
[1,2,2,1] => [2,2,2] => [[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
[1,2,3] => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
[1,3,1,1] => [2,1,3] => [[4,2,2],[1,1]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
[1,3,2] => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
[1,4,1] => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
[1,5] => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
[2,1,1,1,1] => [1,5] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
[2,1,1,2] => [1,4,1] => [[4,4,1],[3]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
[2,1,2,1] => [1,3,2] => [[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
[2,1,3] => [1,3,1,1] => [[3,3,3,1],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
[2,2,1,1] => [1,2,3] => [[4,2,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
[2,2,2] => [1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
[2,3,1] => [1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
[2,4] => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
[3,1,1,1] => [1,1,4] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
[3,1,2] => [1,1,3,1] => [[3,3,1,1],[2]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
[3,2,1] => [1,1,2,2] => [[3,2,1,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
[3,3] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
[4,1,1] => [1,1,1,3] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
[4,2] => [1,1,1,2,1] => [[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
[5,1] => [1,1,1,1,2] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
[6] => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
[1,1,1,1,1,1,1] => [7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
[1,1,1,1,1,2] => [6,1] => [[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
[1,1,1,1,2,1] => [5,2] => [[6,5],[4]] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7)
[1,1,1,1,3] => [5,1,1] => [[5,5,5],[4,4]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
[1,1,1,2,1,1] => [4,3] => [[6,4],[3]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7)
[1,1,1,2,2] => [4,2,1] => [[5,5,4],[4,3]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7)
[1,1,1,3,1] => [4,1,2] => [[5,4,4],[3,3]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7)
[1,1,1,4] => [4,1,1,1] => [[4,4,4,4],[3,3,3]] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
[1,1,2,1,1,1] => [3,4] => [[6,3],[2]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7)
[1,1,2,1,2] => [3,3,1] => [[5,5,3],[4,2]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7)
[1,1,2,2,1] => [3,2,2] => [[5,4,3],[3,2]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7)
[1,1,2,3] => [3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7)
[1,1,3,1,1] => [3,1,3] => [[5,3,3],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7)
[1,1,3,2] => [3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7)
[1,1,4,1] => [3,1,1,2] => [[4,3,3,3],[2,2,2]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7)
[1,1,5] => [3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
[1,2,1,1,1,1] => [2,5] => [[6,2],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7)
[1,2,1,1,2] => [2,4,1] => [[5,5,2],[4,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7)
[1,2,1,2,1] => [2,3,2] => [[5,4,2],[3,1]] => ([(0,5),(1,3),(1,6),(2,4),(2,5),(4,6)],7)
[1,2,1,3] => [2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7)
[1,2,2,1,1] => [2,2,3] => [[5,3,2],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7)
[1,2,2,2] => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7)
[1,2,3,1] => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7)
[1,2,4] => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7)
[1,3,1,1,1] => [2,1,4] => [[5,2,2],[1,1]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7)
[1,3,1,2] => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
[1,3,2,1] => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7)
[1,3,3] => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7)
[1,4,1,1] => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7)
[1,4,2] => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7)
[1,5,1] => [2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7)
[1,6] => [2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
[2,1,1,1,1,1] => [1,6] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
[2,1,1,1,2] => [1,5,1] => [[5,5,1],[4]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7)
[2,1,1,2,1] => [1,4,2] => [[5,4,1],[3]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7)
[2,1,1,3] => [1,4,1,1] => [[4,4,4,1],[3,3]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7)
[2,1,2,1,1] => [1,3,3] => [[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7)
[2,1,2,2] => [1,3,2,1] => [[4,4,3,1],[3,2]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7)
>>> Load all 256 entries. <<<Map
complement
Description
The complement of a composition.
The complement of a composition I is defined as follows:
If I is the empty composition, then the complement is also the empty composition. Otherwise, let S be the descent set corresponding to I=(i1,…,ik), that is, the subset
{i1,i1+i2,…,i1+i2+⋯+ik−1}
of {1,2,…,|I|−1}. Then, the complement of I is the composition of the same size as I, whose descent set is {1,2,…,|I|−1}∖S.
The complement of a composition I coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to I.
The complement of a composition I is defined as follows:
If I is the empty composition, then the complement is also the empty composition. Otherwise, let S be the descent set corresponding to I=(i1,…,ik), that is, the subset
{i1,i1+i2,…,i1+i2+⋯+ik−1}
of {1,2,…,|I|−1}. Then, the complement of I is the composition of the same size as I, whose descent set is {1,2,…,|I|−1}∖S.
The complement of a composition I coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to I.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
searching the database
Sorry, this map was not found in the database.