Identifier
Mp00184:
Integer compositions
—to threshold graph⟶
Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00314: Integer compositions —Foata bijection⟶ Integer compositions
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00314: Integer compositions —Foata bijection⟶ Integer compositions
Images
[1] => ([],1) => [1] => [1]
[1,1] => ([(0,1)],2) => [1,1] => [1,1]
[2] => ([],2) => [2] => [2]
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => [1,1,1]
[1,2] => ([(1,2)],3) => [2,1] => [2,1]
[2,1] => ([(0,2),(1,2)],3) => [2,1] => [2,1]
[3] => ([],3) => [3] => [3]
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [1,1,1,1]
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,2,1]
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,2,1]
[1,3] => ([(2,3)],4) => [3,1] => [3,1]
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,2,1]
[2,2] => ([(1,3),(2,3)],4) => [3,1] => [3,1]
[3,1] => ([(0,3),(1,3),(2,3)],4) => [3,1] => [3,1]
[4] => ([],4) => [4] => [4]
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1]
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,2,1]
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,2,1]
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,2,1]
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[1,4] => ([(3,4)],5) => [4,1] => [4,1]
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,2,1]
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[2,3] => ([(2,4),(3,4)],5) => [4,1] => [4,1]
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,3,1]
[3,2] => ([(1,4),(2,4),(3,4)],5) => [4,1] => [4,1]
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [4,1]
[5] => ([],5) => [5] => [5]
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1]
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,1,2,1]
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,1,2,1]
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,1,2,1]
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,1,2,1]
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[1,5] => ([(4,5)],6) => [5,1] => [5,1]
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,1,2,1]
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[2,4] => ([(3,5),(4,5)],6) => [5,1] => [5,1]
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,3,1]
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[3,3] => ([(2,5),(3,5),(4,5)],6) => [5,1] => [5,1]
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,4,1]
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [5,1]
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [5,1]
[6] => ([],6) => [6] => [6]
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,5,1]
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,5,1]
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,5,1]
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,5,1]
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,5,1]
[1,6] => ([(5,6)],7) => [6,1] => [6,1]
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,2,1]
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,3,1]
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,4,1]
>>> Load all 127 entries. <<<Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
Foata bijection
Description
The Foata bijection for compositions.
The Foata bijection $\phi$ is a bijection on the set of words whose letters are positive integers. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
This bijection sends the major index St000769The major index of a composition regarded as a word. to the number of inversions St000766The number of inversions of an integer composition..
The Foata bijection $\phi$ is a bijection on the set of words whose letters are positive integers. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
- If $w_{i+1} \geq v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} \geq v_k$.
- If $w_{i+1} < v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} < v_k$.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
- $1$
- $|1|4 \to 14$
- $|14|2 \to 412$
- $|4|1|2|5 \to 4125$
- $|4|125|3 \to 45123.$
This bijection sends the major index St000769The major index of a composition regarded as a word. to the number of inversions St000766The number of inversions of an integer composition..
searching the database
Sorry, this map was not found in the database.