Processing math: 100%

Identifier
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
Images
[1] => [[1]] => [1] => [1]
[2] => [[1,2]] => [2] => [2]
[1,1] => [[1],[2]] => [2] => [2]
[3] => [[1,2,3]] => [3] => [3]
[2,1] => [[1,2],[3]] => [3] => [3]
[1,1,1] => [[1],[2],[3]] => [3] => [3]
[4] => [[1,2,3,4]] => [4] => [4]
[3,1] => [[1,2,3],[4]] => [4] => [4]
[2,2] => [[1,2],[3,4]] => [3,1] => [3,1]
[2,1,1] => [[1,2],[3],[4]] => [4] => [4]
[1,1,1,1] => [[1],[2],[3],[4]] => [4] => [4]
[5] => [[1,2,3,4,5]] => [5] => [5]
[4,1] => [[1,2,3,4],[5]] => [5] => [5]
[3,2] => [[1,2,3],[4,5]] => [4,1] => [4,1]
[3,1,1] => [[1,2,3],[4],[5]] => [5] => [5]
[2,2,1] => [[1,2],[3,4],[5]] => [3,2] => [3,2]
[2,1,1,1] => [[1,2],[3],[4],[5]] => [5] => [5]
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5] => [5]
[6] => [[1,2,3,4,5,6]] => [6] => [6]
[5,1] => [[1,2,3,4,5],[6]] => [6] => [6]
[4,2] => [[1,2,3,4],[5,6]] => [5,1] => [5,1]
[4,1,1] => [[1,2,3,4],[5],[6]] => [6] => [6]
[3,3] => [[1,2,3],[4,5,6]] => [4,2] => [4,2]
[3,2,1] => [[1,2,3],[4,5],[6]] => [4,2] => [4,2]
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [6] => [6]
[2,2,2] => [[1,2],[3,4],[5,6]] => [3,2,1] => [3,2,1]
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [3,3] => [3,3]
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [6] => [6]
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6] => [6]
[7] => [[1,2,3,4,5,6,7]] => [7] => [7]
[6,1] => [[1,2,3,4,5,6],[7]] => [7] => [7]
[5,2] => [[1,2,3,4,5],[6,7]] => [6,1] => [6,1]
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [7] => [7]
[4,3] => [[1,2,3,4],[5,6,7]] => [5,2] => [5,2]
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [5,2] => [5,2]
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [7] => [7]
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [4,3] => [4,3]
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [4,2,1] => [4,2,1]
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [4,3] => [4,3]
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [7] => [7]
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [3,2,2] => [2,3,2]
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [3,4] => [3,4]
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [7] => [7]
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7] => [7]
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8]
[7,1] => [[1,2,3,4,5,6,7],[8]] => [8] => [8]
[6,2] => [[1,2,3,4,5,6],[7,8]] => [7,1] => [7,1]
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [8] => [8]
[5,3] => [[1,2,3,4,5],[6,7,8]] => [6,2] => [6,2]
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [6,2] => [6,2]
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [8] => [8]
[4,4] => [[1,2,3,4],[5,6,7,8]] => [5,3] => [5,3]
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [5,3] => [5,3]
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [5,2,1] => [5,2,1]
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [5,3] => [5,3]
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [8] => [8]
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [4,3,1] => [4,3,1]
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [4,4] => [4,4]
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [4,2,2] => [2,4,2]
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [4,4] => [4,4]
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [8] => [8]
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [3,2,2,1] => [2,3,2,1]
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [3,2,3] => [3,2,3]
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [3,5] => [3,5]
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [8] => [8]
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [8] => [8]
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9]
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [9] => [9]
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [8,1] => [8,1]
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [9] => [9]
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [7,2] => [7,2]
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [7,2] => [7,2]
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [9] => [9]
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [6,3] => [6,3]
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [6,3] => [6,3]
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [6,2,1] => [6,2,1]
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [6,3] => [6,3]
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [9] => [9]
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [5,4] => [5,4]
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [5,3,1] => [5,3,1]
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [5,4] => [5,4]
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [5,2,2] => [2,5,2]
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [5,4] => [5,4]
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [9] => [9]
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [4,3,2] => [4,3,2]
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [4,3,2] => [4,3,2]
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [4,5] => [4,5]
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [4,2,2,1] => [2,4,2,1]
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [4,2,3] => [2,4,3]
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [4,5] => [4,5]
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [3,2,2,2] => [2,2,3,2]
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [3,2,4] => [3,2,4]
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [3,6] => [3,6]
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10]
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [10] => [10]
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => [9,1] => [9,1]
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [10] => [10]
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => [8,2] => [8,2]
>>> Load all 138 entries. <<<
[7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => [8,2] => [8,2]
[7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => [10] => [10]
[6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => [7,3] => [7,3]
[6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => [7,3] => [7,3]
[6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => [7,2,1] => [7,2,1]
[6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => [7,3] => [7,3]
[6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => [10] => [10]
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [6,4] => [6,4]
[5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => [6,4] => [6,4]
[5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => [6,3,1] => [6,3,1]
[5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => [6,4] => [6,4]
[5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => [6,2,2] => [2,6,2]
[5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => [6,4] => [6,4]
[5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => [10] => [10]
[4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => [5,4,1] => [5,4,1]
[4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => [5,5] => [5,5]
[4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => [5,3,2] => [5,3,2]
[4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => [5,3,2] => [5,3,2]
[4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => [5,5] => [5,5]
[4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => [5,2,2,1] => [2,5,2,1]
[4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => [5,2,3] => [2,5,3]
[4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => [5,5] => [5,5]
[4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => [10] => [10]
[3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => [4,3,3] => [3,4,3]
[3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => [4,3,2,1] => [4,3,2,1]
[3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => [4,3,3] => [3,4,3]
[3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => [4,6] => [4,6]
[3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => [4,2,2,2] => [2,2,4,2]
[3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => [4,2,4] => [4,2,4]
[3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => [4,6] => [4,6]
[3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => [10] => [10]
[2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => [3,2,2,2,1] => [2,2,3,2,1]
[2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => [3,2,2,3] => [2,3,2,3]
[2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => [3,2,5] => [3,2,5]
[2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => [3,7] => [3,7]
[2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10] => [10]
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10] => [10]
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
valley composition
Description
The composition corresponding to the valley set of a standard tableau.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2in1 is a valley if i1 is a descent and i is an ascent.
This map returns the composition c1,,ck of n such that {c1,c1+c2,,c1++ck} is the valley set of T.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.