Identifier
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Images
[1] => [[1]] => [1] => [1]
[2] => [[1,2]] => [2] => [2]
[1,1] => [[1],[2]] => [2] => [2]
[3] => [[1,2,3]] => [3] => [3]
[2,1] => [[1,2],[3]] => [3] => [3]
[1,1,1] => [[1],[2],[3]] => [3] => [3]
[4] => [[1,2,3,4]] => [4] => [4]
[3,1] => [[1,2,3],[4]] => [4] => [4]
[2,2] => [[1,2],[3,4]] => [3,1] => [3,1]
[2,1,1] => [[1,2],[3],[4]] => [4] => [4]
[1,1,1,1] => [[1],[2],[3],[4]] => [4] => [4]
[5] => [[1,2,3,4,5]] => [5] => [5]
[4,1] => [[1,2,3,4],[5]] => [5] => [5]
[3,2] => [[1,2,3],[4,5]] => [4,1] => [4,1]
[3,1,1] => [[1,2,3],[4],[5]] => [5] => [5]
[2,2,1] => [[1,2],[3,4],[5]] => [3,2] => [3,2]
[2,1,1,1] => [[1,2],[3],[4],[5]] => [5] => [5]
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5] => [5]
[6] => [[1,2,3,4,5,6]] => [6] => [6]
[5,1] => [[1,2,3,4,5],[6]] => [6] => [6]
[4,2] => [[1,2,3,4],[5,6]] => [5,1] => [5,1]
[4,1,1] => [[1,2,3,4],[5],[6]] => [6] => [6]
[3,3] => [[1,2,3],[4,5,6]] => [4,2] => [4,2]
[3,2,1] => [[1,2,3],[4,5],[6]] => [4,2] => [4,2]
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [6] => [6]
[2,2,2] => [[1,2],[3,4],[5,6]] => [3,2,1] => [3,2,1]
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [3,3] => [3,3]
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [6] => [6]
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6] => [6]
[7] => [[1,2,3,4,5,6,7]] => [7] => [7]
[6,1] => [[1,2,3,4,5,6],[7]] => [7] => [7]
[5,2] => [[1,2,3,4,5],[6,7]] => [6,1] => [6,1]
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [7] => [7]
[4,3] => [[1,2,3,4],[5,6,7]] => [5,2] => [5,2]
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [5,2] => [5,2]
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [7] => [7]
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [4,3] => [4,3]
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [4,2,1] => [4,2,1]
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [4,3] => [4,3]
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [7] => [7]
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [3,2,2] => [2,3,2]
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [3,4] => [3,4]
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [7] => [7]
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7] => [7]
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8]
[7,1] => [[1,2,3,4,5,6,7],[8]] => [8] => [8]
[6,2] => [[1,2,3,4,5,6],[7,8]] => [7,1] => [7,1]
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [8] => [8]
[5,3] => [[1,2,3,4,5],[6,7,8]] => [6,2] => [6,2]
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [6,2] => [6,2]
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [8] => [8]
[4,4] => [[1,2,3,4],[5,6,7,8]] => [5,3] => [5,3]
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [5,3] => [5,3]
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [5,2,1] => [5,2,1]
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [5,3] => [5,3]
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [8] => [8]
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [4,3,1] => [4,3,1]
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [4,4] => [4,4]
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [4,2,2] => [2,4,2]
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [4,4] => [4,4]
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [8] => [8]
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [3,2,2,1] => [2,3,2,1]
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [3,2,3] => [3,2,3]
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [3,5] => [3,5]
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [8] => [8]
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [8] => [8]
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9]
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [9] => [9]
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [8,1] => [8,1]
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [9] => [9]
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [7,2] => [7,2]
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [7,2] => [7,2]
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [9] => [9]
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [6,3] => [6,3]
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [6,3] => [6,3]
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [6,2,1] => [6,2,1]
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [6,3] => [6,3]
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [9] => [9]
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [5,4] => [5,4]
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [5,3,1] => [5,3,1]
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [5,4] => [5,4]
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [5,2,2] => [2,5,2]
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [5,4] => [5,4]
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [9] => [9]
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [4,3,2] => [4,3,2]
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [4,3,2] => [4,3,2]
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [4,5] => [4,5]
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [4,2,2,1] => [2,4,2,1]
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [4,2,3] => [2,4,3]
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [4,5] => [4,5]
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [3,2,2,2] => [2,2,3,2]
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [3,2,4] => [3,2,4]
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [3,6] => [3,6]
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10]
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [10] => [10]
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => [9,1] => [9,1]
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [10] => [10]
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => [8,2] => [8,2]
>>> Load all 138 entries. <<<Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
valley composition
Description
The composition corresponding to the valley set of a standard tableau.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a valley if i−1 is a descent and i is an ascent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the valley set of T.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a valley if i−1 is a descent and i is an ascent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the valley set of T.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
See Mp00314Foata bijection.
searching the database
Sorry, this map was not found in the database.